
DataStax Distribution of
Apache Cassandra™ 3.x

Documentation
November 24, 2016

Apache, Apache Cassandra, Apache Hadoop, Hadoop and the
eye logo are trademarks of the Apache Software Foundation

© 2016 DataStax, Inc. All rights reserved.

Contents

2

Contents

About Apache Cassandra... 7
What's new?.. 9

Understanding the architecture... 11
Architecture in brief... 11
Internode communications (gossip).. 13

Failure detection and recovery...14
Data distribution and replication..14

Consistent hashing... 14
Virtual nodes...16
Data replication...17

Partitioners...18
Murmur3Partitioner..19
RandomPartitioner.. 19
ByteOrderedPartitioner... 19

Snitches... 20
Dynamic snitching...20
SimpleSnitch... 20
RackInferringSnitch...20
PropertyFileSnitch...21
GossipingPropertyFileSnitch...22
Ec2Snitch.. 22
Ec2MultiRegionSnitch... 23
GoogleCloudSnitch... 25
CloudstackSnitch.. 25

Database internals... 25
Storage engine.. 25
How Cassandra reads and writes data...26

How is data written?...26
How is data maintained?..28
How is data updated?.. 35
How is data deleted?... 36
How are indexes stored and updated?.. 37
How is data read?.. 38
How do write patterns affect reads?.. 41

Data consistency... 41
How are consistent read and write operations handled?... 41
How are Cassandra transactions different from RDBMS transactions?.................................43
How do I accomplish lightweight transactions with linearizable consistency?........................43
How do I discover consistency level performance?... 44
How is the consistency level configured?.. 45
How is the serial consistency level configured?.. 47
How are read requests accomplished?..48
How are write requests accomplished?... 58

Planning a cluster deployment.. 61

Contents

3

Installing..61
Installing the DataStax Distribution of Apache Cassandra 3.x on RHEL-based systems................. 61
Installing DataStax Distribution of Apache Cassandra 3.x on Debian-based systems......................62
Installing from the binary tarball..64

Configuring Cassandra without root permissions...65
Installing earlier releases of DataStax Distribution of Apache Cassandra 3.x.................................. 66
Uninstalling DataStax Distribution of Apache Cassandra 3.x... 67
Installing on cloud providers... 67
Installing the JDK.. 68

Installing Oracle JDK on RHEL-based Systems.. 68
Installing Oracle JDK on Debian or Ubuntu Systems.. 69
Installing OpenJDK on RHEL-based Systems... 70
Installing OpenJDK on Debian-based Systems... 70

Recommended production settings for Linux and Windows...71
Install locations.. 71

Tarball installation directories... 71
Package installation directories.. 72

Configuration..73
cassandra.yaml configuration file.. 73
Cassandra include file...93
Security.. 93

Securing Cassandra... 93
Internal authentication.. 94
Internal authorization.. 99
JMX authentication and authorization.. 100
SSL encryption... 105
Configuring firewall port access... 122

Configuring gossip settings... 122
Configuring the heap dump directory..123
Configuring virtual nodes...124

Enabling virtual nodes on a new cluster.. 124
Enabling virtual nodes on an existing production cluster... 124

Using multiple network interfaces... 125
Configuring logging..127
Commit log archive configuration..129
Generating tokens... 130
Hadoop support... 130

Initializing a cluster... 132
Initializing a multiple node cluster (single datacenter).. 132
Initializing a multiple node cluster (multiple datacenters)... 135
Starting and stopping Cassandra..138

Starting Cassandra as a service.. 138
Starting Cassandra as a stand-alone process... 138
Stopping Cassandra as a service.. 139
Stopping Cassandra as a stand-alone process... 139
Clearing the data as a service... 139
Clearing the data as a stand-alone process.. 139

Operations.. 140
Adding or removing nodes, datacenters, or clusters.. 140

Contents

4

Adding nodes to an existing cluster... 140
Adding a datacenter to a cluster..141
Replacing a dead node or dead seed node.. 143
Replacing a running node.. 145
Moving a node from one rack to another...146
Decommissioning a datacenter.. 146
Removing a node... 147
Switching snitches.. 147
Changing keyspace replication strategy...148
Edge cases for transitioning or migrating a cluster..149
Adding single-token nodes to a cluster..150
Adding a datacenter to a single-token architecture cluster.. 151
Replacing a dead node in a single-architecture cluster... 152

Backing up and restoring data..152
About snapshots... 152
Taking a snapshot.. 153
Deleting snapshot files... 153
Enabling incremental backups..154
Restoring from a snapshot... 154
Restoring a snapshot into a new cluster..155
Recovering from a single disk failure using JBOD...156

Repairing nodes.. 158
Hinted Handoff: repair during write path.. 158
Read Repair: repair during read path.. 160
Manual repair: Anti-entropy repair..160
Migrating to incremental repairs...165

Monitoring Cassandra... 166
Monitoring a Cassandra cluster..166

Tuning Java resources..171
Data caching..174

Configuring data caches...175
Monitoring and adjusting caching...176

Configuring memtable thresholds..177
Configuring compaction...177
Compression..179

When to compress data... 179
Configuring compression.. 179

Testing compaction and compression...180
Tuning Bloom filters.. 181
Moving data to or from other databases...181
Purging gossip state on a node..182

Cassandra tools... 183
The nodetool utility.. 183

About the nodetool utility..183
assassinate... 184
bootstrap... 185
cfhistograms..185
cfstats..186
cleanup..186
clearsnapshot..186
compact...187
compactionhistory... 188
compactionstats.. 191
decommission... 191

Contents

5

describecluster.. 192
describering...193
disableautocompaction... 194
disablebackup... 195
disablebinary... 195
disablegossip.. 195
disablehandoff...196
disablehintsfordc... 196
disablethrift..197
drain.. 198
enableautocompaction.. 199
enablebackup..199
enablebinary..200
enablegossip... 200
enablehandoff... 200
enablehintsfordc..201
enablethrift.. 202
nodetool failuredetector.. 202
flush...203
gcstats...203
getcompactionthreshold.. 204
getcompactionthroughput..204
getendpoints..205
getlogginglevels.. 206
getsstables.. 206
getstreamthroughput... 208
gettimeout... 208
gettraceprobability...209
gossipinfo.. 209
help... 210
info.. 210
invalidatecountercache... 211
invalidatekeycache..212
invalidaterowcache..212
join...213
listsnapshots... 213
move... 214
netstats..214
pausehandoff.. 215
proxyhistograms..216
rangekeysample..217
rebuild... 218
rebuild_index...219
refresh... 219
refreshsizeestimates... 220
reloadtriggers.. 220
relocatesstables.. 221
removenode.. 221
repair... 223
replaybatchlog...226
resetlocalschema.. 226
resumehandoff.. 227
ring.. 227
scrub... 228
setcachecapacity...229
setcachekeystosave..230

Contents

6

setcompactionthreshold.. 231
setcompactionthroughput..232
sethintedhandoffthrottlekb...232
setlogginglevel.. 233
setstreamthroughput... 234
settimeout..234
settraceprobability... 235
snapshot..236
status...239
statusbackup... 240
statusbinary...240
statusgossip.. 241
statushandoff...241
statusthrift..242
stop... 242
stopdaemon.. 243
tablehistograms...244
tablestats...245
toppartitions...249
tpstats..251
truncatehints..255
upgradesstables..255
nodetool viewbuildstatus...256
verify..257
version...258

The cassandra utility... 258
The cassandra-stress tool...260

Interpreting the output of cassandra-stress..269
SSTable utilities...270

sstabledump..271
sstableexpiredblockers..272
sstablekeys... 272
sstablelevelreset... 273
sstableloader (Cassandra bulk loader)...273
sstablemetadata..276
sstableofflinerelevel...279
sstablerepairedset...280
sstablescrub.. 280
sstablesplit.. 281
sstableupgrade..282
sstableutil.. 282
sstableverify.. 283

Troubleshooting... 283

Release notes...283

About Apache Cassandra

7

About Apache Cassandra
Documentation for developers and administrators on installing, configuring, and using the features and capabilities of Apache Cassandra scalable open source NoSQL database.

About this document
Welcome to the Cassandra documentation provided by DataStax. To ensure that you get the best
experience in using this document, take a moment to look at the Tips for using DataStax documentation.

The landing pages provide information about supported platforms, product compatibility, planning and
testing cluster deployments, recommended production settings, troubleshooting, third-party software,
resources for additional information, administrator and developer topics, and earlier documentation.

Overview of Apache Cassandra
Apache Cassandra™ is a massively scalable open source NoSQL database. Cassandra is perfect for
managing large amounts of structured, semi-structured, and unstructured data across multiple datacenters
and the cloud. Cassandra delivers continuous availability, linear scalability, and operational simplicity
across many commodity servers with no single point of failure, along with a powerful dynamic data model
designed for maximum flexibility and fast response times.

The latest version of DataStax Distribution of Apache Cassandra 3.x is 3.9.

How does Cassandra work?
Cassandra’s built-for-scale architecture means that it is capable of handling petabytes of information and
thousands of concurrent users/operations per second.

Cassandra is a
partitioned row store
database

Cassandra's architecture allows any authorized user to connect to any
node in any datacenter and access data using the CQL language. For
ease of use, CQL uses a similar syntax to SQL. The most basic way to
interact with Cassandra is using the CQL shell, cqlsh. Using cqlsh, you can
create keyspaces and tables, insert and query tables, plus much more. This
Cassandra release works with CQL for Cassandra 2.2 and later. If you prefer
a graphical tool, you can use DataStax DevCenter. For production, DataStax
supplies a number drivers so that CQL statements can be passed from client
to cluster and back.

Automatic data
distribution

Cassandra provides automatic data distribution across all nodes that
participate in a ring or database cluster. There is nothing programmatic that
a developer or administrator needs to do or code to distribute data across a
cluster because data is transparently partitioned across all nodes in a cluster.

Built-in and
customizable
replication

Cassandra also provides built-in and customizable replication, which stores
redundant copies of data across nodes that participate in a Cassandra ring.
This means that if any node in a cluster goes down, one or more copies of that
node’s data is available on other machines in the cluster. Replication can be
configured to work across one datacenter, many datacenters, and multiple
cloud availability zones.

Cassandra supplies
linear scalability

Cassandra supplies linear scalability, meaning that capacity may be easily
added simply by adding new nodes online. For example, if 2 nodes can handle
100,000 transactions per second, 4 nodes will support 200,000 transactions/
sec and 8 nodes will tackle 400,000 transactions/sec:

/en/landing_page/doc/landing_page/docTips.html
/en
/en/cql/3.3/cql/cql_using/useAboutCQL.html
/en/cql/3.3/index.html
/en/developer/devcenter/doc/devcenter/features.html
/en/developer/driver-matrix/doc/common/driverMatrix.html

About Apache Cassandra

8

How is Cassandra different from relational databases?
Cassandra is designed from the ground up as a distributed database with peer-to-peer communication.
As a best practice, queries should be one per table. Data is denormalized to make this possible. For this
reason, the concept of JOINs between tables does not exist, although client-side joins can be used in
applications.

What is NoSQL?
Most common translation is "Not only SQL", meaning a database that uses a method of storage different
from a relational, or SQL, database. There are many different types of NoSQL databases, so a direct
comparison of even the most used types is not useful. Database administrators today must be polyglot-
friendly, meaning they must know how to work with many different RDBMS and NoSQL databases.

What is CQL?
Cassandra Query Language (CQL) is the primary interface into the Cassandra DBMS. Using CQL is
similar to using SQL (Structured Query Language). CQL and SQL share the same abstract idea of a table
constructed of columns and rows. The main difference from SQL is that Cassandra does not support joins
or subqueries. Instead, Cassandra emphasizes denormalization through CQL features like collections and
clustering specified at the schema level.

CQL is the recommended way to interact with Cassandra. Performance and the simplicity of reading and
using CQL is an advantage of modern Cassandra over older Cassandra APIs.

The CQL documentation contains a data modeling topic, examples, and command reference.

How do I interact with Cassandra?
The most basic way to interact with Cassandra is using the CQL shell, cqlsh. Using cqlsh, you can create
keyspaces and tables, insert and query tables, plus much more. If you prefer a graphical tool, you can use
DevCenter. For production, DataStax supplies a number of drivers in various programming languages, so
that CQL statements can be passed from client to cluster and back.

How can I move data to/from Cassandra?
Data is inserted using the CQL INSERT command, the CQL COPY command and CSV files, or
sstableloader. But in reality, you need to consider how your client application will query the tables, and do
data modeling first. The paradigm shift between relational and NoSQL means that a straight move of data
from an RDBMS database to Cassandra will be doomed to failure.

What other tools come with Cassandra?
Cassandra automatically installs nodetool, a useful command-line management tool for Cassandra. A tool
for load-stressing and basic benchmarking, cassandra-stress, is also installed by default.

/en/cql/3.3/cql/cqlIntro.html
/en/cql/3.3/index.html
/en/cql/3.3/cql/ddl/dataModelingApproach.html
/en/cql/3.3/cql/cql_using/useStartingCqlshTOC.html
/en/developer/devcenter/doc/devcenter/features.html
/en/developer/driver-matrix/doc/common/driverMatrix.html

About Apache Cassandra

9

What kind of hardware/cloud environment do I need to run Cassandra?
Cassandra is designed to run on commodity hardware with common specifications. In the cloud,
Cassandra is adapted for most common offerings.

What's new in DataStax Distribution of Apache Cassandra 3.x
An overview of new features in the DataStax Distribution of Apache Cassandra 3.x.

Note: Cassandra is now releasing on a tick-tock schedule.

The latest version of DataStax Distribution of Apache Cassandra 3.x is 3.9.

The CHANGES.txt describes the changes in detail. You can view all version changes by branch or tag in
the drop-down list on the changes page.

New features Cassandra 3.2 and later

-graph option for
cassandra-stress

cassandra-stress results can be automatically graphed for data
visualization.

TTL for COPY FROM A TTL value can be specified when copying from CSV files.

bulkloader can
use third party
authentication

The bulkloader has an option -ap for third-party authentication.

CREATE TABLE WITH
ID

If a table is accidentally dropped, it can be recreated with its ID and the
commitlog replayed to regain data.

Static columns can be
indexed

In Cassandra 3.4 and later, static columns can be indexed.

New option for
nodetool compact

In Cassandra 3.4 and later, addition of --user-definedcompact to nodetool
compact to allow user to submit a list of files. Handy for dealing with low disk
space or tombstone purging.

Display timestamp in
sub-second precision

In Cassandra 3.4 and later, timestamp defaults to include sub-second
precision.

nodetool gettimeout
and nodetool
settimeout

In Cassandra 3.4 and later, two nodetool commands to print out or set the
value of a timeout in milliseconds.

jvm.options file for GC
and some JVM options

Some JVM options have been moved from the cassandra-env.sh file into
the new jvm.options file.

JBOD improvements Improvements to SSTable partitioning by token range have improved JBOD
compaction and backup. See Improving JBOD for more details. A new
command is available to support the improvements, nodetool relocatesstables.

Clustering columns
can be used in
WHERE clause without
secondary index

In Cassandra 3.6 and later, clustering columns without a secondary index can
be used in a WHERE clause, provided the ALLOW FILTERING clause is also
used.

/en/landing_page/doc/landing_page/planning/planningHardware.html
https://github.com/apache/cassandra/blob/cassandra-3.6/CHANGES.txt#L1-L113
/en/cql/3.3/cql/cql_reference/copy_r.html
/en/cql/3.3/cql/cql_reference/create_table_r.html
/en/cql/3.3/cql/cql_reference/timestamp_type_r.html
http://www.datastax.com/dev/blog/improving-jbod
/en/cql/3.3/cql/cql_using/useQueryColumnsSort.html
/en/cql/3.3/cql/cql_using/useQueryColumnsSort.html

About Apache Cassandra

10

Update and delete
individual subfields
of a user-defined type
(UDT)

In Cassandra 3.6 and later, if a UDT has only non-collection fields, an
individual field value can be updated or deleted.

PER PARTITION LIMIT In Cassandra 3.6 and later, a query can be limited to return results from each
partition, such as a "Top 3" listing.

CAS statistics
added to nodetool
proxyhistograms

In Cassandra 3.6 and later, CAS read and write latency is displayed for
compare-and-set operations.

--hex-format option
added to nodetool
getsstables

In Cassandra 3.6 and later, an option to use a hex-formatted key to get
SSTables is added to nodetool getsstables.

Static columns can
now be used with SASI
indexes

In Cassandra 3.6 and later, static columns can be used with SASI indexes.

New features released in Cassandra 3.0

Storage engine
refactored

The Storage Engine has been refactored.

Materialized Views Materialized views handle automated server-side denormalization, with
consistency between base and view data.

Support for Windows Support for Windows 7, Windows 8, Windows Server 2008, and Windows
Server 2012. See DataStax Cassandra 3.0 Windows Documentation.

Operations improvements

Addition of
MAX_WINDOW_SIZE_SECONDS
to DTCS compaction
settings

Allow DTCS compaction governance based on maximum window size rather
than SSTable age.

File-based Hint Storage
and Improved Replay

Hints are now stored in files and replay is improved.

Default garbage
collector is changed to
G1

Default garbage collector is changed from Concurrent-Mark-Sweep (CMS) to
G1. G1 performance is better for nodes with heap size of 4GB or greater.

Changed syntax
for CREATE TABLE
compression options

Made the compression options more consistent for CREATE TABLE.

Add nodetool
command to force
blocking batchlog
replay

BatchlogManager can force batchlog replay using nodetool.

Nodetool over SSL Nodetool can connect using SSL like cqlsh.

/en/cql/3.3/cql/cql_using/useInsertUDT.html
/en/cql/3.3/cql/cql_using/useQueryColumnsSort.html
/en/cql/3.3/cql/cql_using/useQueryColumnsSort.html
/en/cql/3.3/cql/cql_using/useSASIIndexConcept.html
/en/cassandra_win/3.0/cassandra/cassandraAbout.html
/en/cql/3.3/cql/cql_reference/compactSubprop.html

Understanding the architecture

11

New nodetool options
for hinted handoffs

Nodetool options disablehintsfordc and enablehintsfordc added. to
selectively disable or enable hinted handoffs for a datacenter.

nodetool stop Nodetool option added to stop compactions.

Other notable changes

Requires Java 8 Java 8 is now required.

nodetool cfstats and
nodetool cfhistograms
renamed

Renamed nodetool cfstats to nodetool tablestats. Renamed
nodetool cfhistograms to nodetool tablehistograms.

Native protocol v1 and
v2 are dropped

Native protocol v1 and v2 are dropped in Cassandra 3.0.

DataStax AMI does not
install Cassandra 3.0
or 3.x

You can install Cassandra 2.1 and earlier versions on Amazon EC2 using
the DataStax AMI (Amazon Machine Image) as described in the AMI
documentation for Cassandra 2.1.

To install Cassandra 3.0 and later on Amazon EC2, use a trusted AMI for your
platform and the appropriate install method for that platform.

Understanding the architecture
Important topics for understanding Cassandra.

Architecture in brief
Essential information for understanding and using Cassandra.

Cassandra is designed to handle big data workloads across multiple nodes with no single point of failure.
Its architecture is based on the understanding that system and hardware failures can and do occur.
Cassandra addresses the problem of failures by employing a peer-to-peer distributed system across
homogeneous nodes where data is distributed among all nodes in the cluster. Each node frequently
exchanges state information about itself and other nodes across the cluster using peer-to-peer gossip
communication protocol. A sequentially written commit log on each node captures write activity to ensure
data durability. Data is then indexed and written to an in-memory structure, called a memtable, which
resembles a write-back cache. Each time the memory structure is full, the data is written to disk in an
SSTables data file. All writes are automatically partitioned and replicated throughout the cluster. Cassandra
periodically consolidates SSTables using a process called compaction, discarding obsolete data marked
for deletion with a tombstone. To ensure all data across the cluster stays consistent, various repair
mechanisms are employed.

Cassandra is a partitioned row store database, where rows are organized into tables with a required
primary key. Cassandra's architecture allows any authorized user to connect to any node in any datacenter
and access data using the CQL language. For ease of use, CQL uses a similar syntax to SQL and works
with table data. Developers can access CQL through cqlsh, DevCenter, and via drivers for application
languages. Typically, a cluster has one keyspace per application composed of many different tables.

Client read or write requests can be sent to any node in the cluster. When a client connects to a node with
a request, that node serves as the coordinator for that particular client operation. The coordinator acts as
a proxy between the client application and the nodes that own the data being requested. The coordinator
determines which nodes in the ring should get the request based on how the cluster is configured.

/en/latest-dsc-ami
/en/latest-dsc-ami
/en/landing_page/doc/landing_page/planning/planningEC2.html#other-amis
/en/glossary/doc/glossary/gloss_gossip.html
/en/glossary/doc/glossary/gloss_commit_log.html
/en/glossary/doc/glossary/gloss_memtable.html
/en/glossary/doc/glossary/gloss_sstable.html
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompaction
/en/glossary/doc/glossary/gloss_tombstone.html
/en/cql/3.3/cql/cql_reference/cqlshCommandsTOC.html
/en/developer/devcenter/doc
/en/developer/driver-matrix/doc/common/driverMatrix.html#driver-cmpt-matrix
/en/glossary/doc/glossary/gloss_keyspace.html
/en/glossary/doc/glossary/gloss_coordinator_node.html

Understanding the architecture

12

Key structures
• Node

Where you store your data. It is the basic infrastructure component of Cassandra.
• datacenter

A collection of related nodes. A datacenter can be a physical datacenter or virtual datacenter. Different
workloads should use separate datacenters, either physical or virtual. Replication is set by datacenter.
Using separate datacenters prevents Cassandra transactions from being impacted by other workloads
and keeps requests close to each other for lower latency. Depending on the replication factor, data can
be written to multiple datacenters. datacenters must never span physical locations.

• Cluster

A cluster contains one or more datacenters. It can span physical locations.
• Commit log

All data is written first to the commit log for durability. After all its data has been flushed to SSTables, it
can be archived, deleted, or recycled.

• SSTable

A sorted string table (SSTable) is an immutable data file to which Cassandra writes memtables
periodically. SSTables are append only and stored on disk sequentially and maintained for each
Cassandra table.

• CQL Table

A collection of ordered columns fetched by table row. A table consists of columns and has a primary
key.

Key components for configuring Cassandra
• Gossip

A peer-to-peer communication protocol to discover and share location and state information about the
other nodes in a Cassandra cluster. Gossip information is also persisted locally by each node to use
immediately when a node restarts.

• Partitioner

A partitioner determines which node will receive the first replica of a piece of data, and how to distribute
other replicas across other nodes in the cluster. Each row of data is uniquely identified by a primary
key, which may be the same as its partition key, but which may also include other clustering columns.
A partitioner is a hash function that derives a token from the primary key of a row. The partitioner
uses the token value to determine which nodes in the cluster receive the replicas of that row. The
Murmur3Partitioner is the default partitioning strategy for new Cassandra clusters and the right choice
for new clusters in almost all cases.

You must set the partitioner and assign the node a num_tokens value for each node. The number
of tokens you assign depends on the hardware capabilities of the system. If not using virtual nodes
(vnodes), use the initial_token setting instead.

• Replication factor

The total number of replicas across the cluster. A replication factor of 1 means that there is only one
copy of each row on one node. A replication factor of 2 means two copies of each row, where each
copy is on a different node. All replicas are equally important; there is no primary or master replica.
You define the replication factor for each datacenter. Generally you should set the replication strategy
greater than one, but no more than the number of nodes in the cluster.

• Replica placement strategy

Cassandra stores copies (replicas) of data on multiple nodes to ensure reliability and fault tolerance.
A replication strategy determines which nodes to place replicas on. The first replica of data is simply
the first copy; it is not unique in any sense. The NetworkTopologyStrategy is highly recommended for

/en/landing_page/doc/landing_page/planning/planningHardware.html

Understanding the architecture

13

most deployments because it is much easier to expand to multiple datacenters when required by future
expansion.

When creating a keyspace, you must define the replica placement strategy and the number of replicas
you want.

• Snitch

A snitch defines groups of machines into datacenters and racks (the topology) that the replication
strategy uses to place replicas.

You must configure a snitch when you create a cluster. All snitches use a dynamic snitch layer,
which monitors performance and chooses the best replica for reading. It is enabled by default and
recommended for use in most deployments. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

The default SimpleSnitch does not recognize datacenter or rack information. Use it for single-datacenter
deployments or single-zone in public clouds. The GossipingPropertyFileSnitch is recommended for
production. It defines a node's datacenter and rack and uses gossip for propagating this information to
other nodes.

• The cassandra.yaml configuration file

The main configuration file for setting the initialization properties for a cluster, caching parameters for
tables, properties for tuning and resource utilization, timeout settings, client connections, backups, and
security.

By default, a node is configured to store the data it manages in a directory set in the cassandra.yaml
file.

In a production cluster deployment, you can change the commitlog-directory to a different disk drive
from the data_file_directories.

• System keyspace table properties

You set storage configuration attributes on a per-keyspace or per-table basis programmatically or using
a client application, such as CQL.

Related reference
cassandra.yaml configuration file on page 73
The cassandra.yaml file is the main configuration file for Cassandra.

Related information
Install locations on page 71
Install location topics.

Internode communications (gossip)
Cassandra uses a protocol called gossip to discover location and state information about the other nodes participating in a Cassandra cluster.

Gossip is a peer-to-peer communication protocol in which nodes periodically exchange state information
about themselves and about other nodes they know about. The gossip process runs every second and
exchanges state messages with up to three other nodes in the cluster. The nodes exchange information
about themselves and about the other nodes that they have gossiped about, so all nodes quickly learn
about all other nodes in the cluster. A gossip message has a version associated with it, so that during a
gossip exchange, older information is overwritten with the most current state for a particular node.

To prevent problems in gossip communications, use the same list of seed nodes for all nodes in a cluster.
This is most critical the first time a node starts up. By default, a node remembers other nodes it has
gossiped with between subsequent restarts. The seed node designation has no purpose other than
bootstrapping the gossip process for new nodes joining the cluster. Seed nodes are not a single point
of failure, nor do they have any other special purpose in cluster operations beyond the bootstrapping of
nodes.

Attention: In multiple data-center clusters, include at least one node from each datacenter (replication
group) in the seed list. Designating more than a single seed node per datacenter is recommended for fault
tolerance. Otherwise, gossip has to communicate with another datacenter when bootstrapping a node.

/en/glossary/doc/glossary/gloss_gossip.html
/en/cql/3.3/cql/cql_reference/tabProp.html

Understanding the architecture

14

Making every node a seed node is not recommended because of increased maintenance and reduced
gossip performance. Gossip optimization is not critical, but it is recommended to use a small seed list
(approximately three nodes per datacenter).

Failure detection and recovery
A method for locally determining from gossip state and history if another node in the system is down or has come back up.

Failure detection is a method for locally determining from gossip state and history if another node in the
system is down or has come back up. Cassandra uses this information to avoid routing client requests to
unreachable nodes whenever possible. (Cassandra can also avoid routing requests to nodes that are alive,
but performing poorly, through the dynamic snitch.)

The gossip process tracks state from other nodes both directly (nodes gossiping directly to it) and indirectly
(nodes communicated about secondhand, third-hand, and so on). Rather than have a fixed threshold
for marking failing nodes, Cassandra uses an accrual detection mechanism to calculate a per-node
threshold that takes into account network performance, workload, and historical conditions. During gossip
exchanges, every node maintains a sliding window of inter-arrival times of gossip messages from other
nodes in the cluster. Configuring the phi_convict_threshold property adjusts the sensitivity of the failure
detector. Lower values increase the likelihood that an unresponsive node will be marked as down, while
higher values decrease the likelihood that transient failures causing node failure. Use the default value
for most situations, but increase it to 10 or 12 for Amazon EC2 (due to frequently encountered network
congestion). In unstable network environments (such as EC2 at times), raising the value to 10 or 12 helps
prevent false failures. Values higher than 12 and lower than 5 are not recommended.

Node failures can result from various causes such as hardware failures and network outages. Node
outages are often transient but can last for extended periods. Because a node outage rarely signifies a
permanent departure from the cluster it does not automatically result in permanent removal of the node
from the ring. Other nodes will periodically try to re-establish contact with failed nodes to see if they are
back up. To permanently change a node's membership in a cluster, administrators must explicitly add or
remove nodes from a Cassandra cluster using the nodetool utility.

When a node comes back online after an outage, it may have missed writes for the replica data it
maintains. Repair mechanisms exist to recover missed data, such as hinted handoffs and manual repair
with nodetool repair. The length of the outage will determine which repair mechanism is used to make the
data consistent.

Data distribution and replication
How data is distributed and factors influencing replication.

In Cassandra, data distribution and replication go together. Data is organized by table and identified by a
primary key, which determines which node the data is stored on. Replicas are copies of rows. When data is
first written, it is also referred to as a replica.

Factors influencing replication include:

• Virtual nodes: assigns data ownership to physical machines.
• Partitioner: partitions the data across the cluster.
• Replication strategy: determines the replicas for each row of data.
• Snitch: defines the topology information that the replication strategy uses to place replicas.

Consistent hashing
Consistent hashing allows distribution of data across a cluster to minimize reorganization when nodes are added or removed.

Consistent hashing allows distribution of data across a cluster to minimize reorganization when nodes are
added or removed. Consistent hashing partitions data based on the partition key. (For an explanation of
partition keys and primary keys, see the Data modeling example in CQL for Cassandra 2.2 and later.)

For example, if you have the following data:

/en/cql/3.3/cql/ddl/dataModelingApproach.html

Understanding the architecture

15

name age car gender

jim 36 camaro M

carol 37 bmw F

johnny 12 M

suzy 10 F

Cassandra assigns a hash value to each partition key:

Partition key Murmur3 hash value

jim -2245462676723223822

carol 7723358927203680754

johnny -6723372854036780875

suzy 1168604627387940318

Each node in the cluster is responsible for a range of data based on the hash value.

Figure: Hash values in a four node cluster

Cassandra places the data on each node according to the value of the partition key and the range that
the node is responsible for. For example, in a four node cluster, the data in this example is distributed as
follows:

Node Start range End range Partition
key

Hash value

A -9223372036854775808 -4611686018427387904 johnny -6723372854036780875

Understanding the architecture

16

Node Start range End range Partition
key

Hash value

B -4611686018427387903 -1 jim -2245462676723223822

C 0 4611686018427387903 suzy 1168604627387940318

D 4611686018427387904 9223372036854775807 carol 7723358927203680754

Virtual nodes
Overview of virtual nodes (vnodes).

Virtual nodes, known as Vnodes, distribute data across nodes at a finer granularity than can be easily
achieved if calculated tokens are used. Vnodes simplify many tasks in Cassandra:

• Tokens are automatically calculated and assigned to each node.
• Rebalancing a cluster is automatically accomplished when adding or removing nodes. When a node

joins the cluster, it assumes responsibility for an even portion of data from the other nodes in the
cluster. If a node fails, the load is spread evenly across other nodes in the cluster.

• Rebuilding a dead node is faster because it involves every other node in the cluster.
• The proportion of vnodes assigned to each machine in a cluster can be assigned, so smaller and larger

computers can be used in building a cluster.

For more information, see the article Virtual nodes in Cassandra 1.2. To convert an existing cluster to
vnodes, see Enabling virtual nodes on an existing production cluster on page 124.

How data is distributed across a cluster (using virtual nodes)
Vnodes use consistent hashing to distribute data without requiring new token generation and assignment.

Prior to Cassandra 1.2, you had to calculate and assign a single token to each node in a cluster. Each
token determined the node's position in the ring and its portion of data according to its hash value. In
Cassandra 1.2 and later, each node is allowed many tokens. The new paradigm is called virtual nodes
(vnodes). Vnodes allow each node to own a large number of small partition ranges distributed throughout
the cluster. Vnodes also use consistent hashing to distribute data but using them doesn't require token
generation and assignment.

Figure: Virtual vs single-token architecture

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2
/en/archived/cassandra/1.1/docs/initialize/token_generation.html
/en/glossary/doc/glossary/gloss_partition_range.html

Understanding the architecture

17

The top portion of the graphic shows a cluster without vnodes. In this paradigm, each node is assigned
a single token that represents a location in the ring. Each node stores data determined by mapping the
partition key to a token value within a range from the previous node to its assigned value. Each node also
contains copies of each row from other nodes in the cluster. For example, if the replication factor is 3,
range E replicates to nodes 5, 6, and 1. Notice that a node owns exactly one contiguous partition range in
the ring space.

The bottom portion of the graphic shows a ring with vnodes. Within a cluster, virtual nodes are randomly
selected and non-contiguous. The placement of a row is determined by the hash of the partition key within
many smaller partition ranges belonging to each node.

Data replication
Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication strategy determines the nodes where replicas are placed.

Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication strategy
determines the nodes where replicas are placed. The total number of replicas across the cluster is referred
to as the replication factor. A replication factor of 1 means that there is only one copy of each row in the
cluster. If the node containing the row goes down, the row cannot be retrieved. A replication factor of 2
means two copies of each row, where each copy is on a different node. All replicas are equally important;

/en/glossary/doc/glossary/gloss_partition_key.html

Understanding the architecture

18

there is no primary or master replica. As a general rule, the replication factor should not exceed the
number of nodes in the cluster. However, you can increase the replication factor and then add the desired
number of nodes later.

Two replication strategies are available:

• SimpleStrategy: Use only for a single datacenter and one rack. If you ever intend more than one
datacenter, use the NetworkTopologyStrategy.

• NetworkTopologyStrategy: Highly recommended for most deployments because it is much easier
to expand to multiple datacenters when required by future expansion.

SimpleStrategy

Use only for a single datacenter and one rack. SimpleStrategy places the first replica on a node
determined by the partitioner. Additional replicas are placed on the next nodes clockwise in the ring without
considering topology (rack or datacenter location).

NetworkTopologyStrategy

Use NetworkTopologyStrategy when you have (or plan to have) your cluster deployed across multiple
datacenters. This strategy specifies how many replicas you want in each datacenter.

NetworkTopologyStrategy places replicas in the same datacenter by walking the ring clockwise until
reaching the first node in another rack. NetworkTopologyStrategy attempts to place replicas on distinct
racks because nodes in the same rack (or similar physical grouping) often fail at the same time due to
power, cooling, or network issues.

When deciding how many replicas to configure in each datacenter, the two primary considerations are (1)
being able to satisfy reads locally, without incurring cross data-center latency, and (2) failure scenarios. The
two most common ways to configure multiple datacenter clusters are:

• Two replicas in each datacenter: This configuration tolerates the failure of a single node per replication
group and still allows local reads at a consistency level of ONE.

• Three replicas in each datacenter: This configuration tolerates either the failure of one node per
replication group at a strong consistency level of LOCAL_QUORUM or multiple node failures per datacenter
using consistency level ONE.

Asymmetrical replication groupings are also possible. For example, you can have three replicas in one
datacenter to serve real-time application requests and use a single replica elsewhere for running analytics.

Replication strategy is defined per keyspace, and is set during keyspace creation. To set up a keyspace,
see creating a keyspace.

For more about replication strategy options, see Changing keyspace replication strategy on page 148.

Partitioners
A partitioner determines how data is distributed across the nodes in the cluster (including replicas).

A partitioner determines how data is distributed across the nodes in the cluster (including replicas).
Basically, a partitioner is a function for deriving a token representing a row from its partition key, typically
by hashing. Each row of data is then distributed across the cluster by the value of the token.

Both the Murmur3Partitioner and RandomPartitioner use tokens to help assign equal portions
of data to each node and evenly distribute data from all the tables throughout the ring or other grouping,
such as a keyspace. This is true even if the tables use different partition keys, such as usernames or
timestamps. Moreover, the read and write requests to the cluster are also evenly distributed and load
balancing is simplified because each part of the hash range receives an equal number of rows on average.
For more detailed information, see Consistent hashing on page 14.

The main difference between the two partitioners is how each generates the token hash values.
The RandomPartitioner uses a cryptographic hash that takes longer to generate than the
Murmur3Partitioner. Cassandra doesn't really need a cryptographic hash, so using the
Murmur3Partitioner results in a 3-5 times improvement in performance.

/en/glossary/doc/glossary/gloss_data_center.html
/en/cql/3.3/cql/cql_using/useCreateKeyspace.html
/en/glossary/doc/glossary/gloss_partition_key.html

Understanding the architecture

19

Cassandra offers the following partitioners that can be set in the cassandra.yaml file.

• Murmur3Partitioner (default): uniformly distributes data across the cluster based on MurmurHash
hash values.

• RandomPartitioner: uniformly distributes data across the cluster based on MD5 hash values.
• ByteOrderedPartitioner: keeps an ordered distribution of data lexically by key bytes

The Murmur3Partitioner is the default partitioning strategy for Cassandra 1.2 and later new clusters
and the right choice for new clusters in almost all cases. However, the partitioners are not compatible and
data partitioned with one partitioner cannot be easily converted to the other partitioner.

Note: If using virtual nodes (vnodes), you do not need to calculate the tokens. If not using vnodes,
you must calculate the tokens to assign to the initial_token parameter in the cassandra.yaml file. See
Generating tokens on page 130 and use the method for the type of partitioner you are using.

Related information
Install locations on page 71
Install location topics.

Murmur3Partitioner
The Murmur3Partitioner provides fast hashing and good performance.

The Murmur3Partitioner is the default partitioner. The Murmur3Partitioner provides faster hashing and
improved performance than the RandomPartitioner. The Murmur3Partitioner can be used with
vnodes. However, if you don't use vnodes, you must calculate the tokens, as described in Generating
tokens.

Use Murmur3Partitioner for new clusters; you cannot change the partitioner in existing clusters that
use a different partitioner. The Murmur3Partitioner uses the MurmurHash function. This hashing
function creates a 64-bit hash value of the partition key. The possible range of hash values is from -263 to
+263-1.

When using the Murmur3Partitioner, you can page through all rows using the token function in a CQL
query.

RandomPartitioner
The default partitioner prior to Cassandra 1.2.

The RandomPartitioner was the default partitioner prior to Cassandra 1.2. It is included for backwards
compatibility. The RandomPartitioner can be used with virtual nodes (vnodes). However, if you don't use
vnodes, you must calculate the tokens, as described in Generating tokens.The RandomPartitioner
distributes data evenly across the nodes using an MD5 hash value of the row key. The possible range of
hash values is from 0 to 2127 -1.

When using the RandomPartitioner, you can page through all rows using the token function in a CQL
query.

ByteOrderedPartitioner
Cassandra provides this partitioner for ordered partitioning. It is included for backwards compatibility.

Cassandra provides the ByteOrderedPartitioner for ordered partitioning. It is included for backwards
compatibility. This partitioner orders rows lexically by key bytes. You calculate tokens by looking at the
actual values of your partition key data and using a hexadecimal representation of the leading character(s)
in a key. For example, if you wanted to partition rows alphabetically, you could assign an A token using its
hexadecimal representation of 41.

Using the ordered partitioner allows ordered scans by primary key. This means you can scan rows as
though you were moving a cursor through a traditional index. For example, if your application has user
names as the partition key, you can scan rows for users whose names fall between Jake and Joe. This
type of query is not possible using randomly partitioned partition keys because the keys are stored in the
order of their MD5 hash (not sequentially).

/en/cql/3.3/cql/cql_reference/paging.html
/en/cql/3.3/cql/cql_reference/paging.html

Understanding the architecture

20

Although having the capability to do range scans on rows sounds like a desirable feature of ordered
partitioners, there are ways to achieve the same functionality using table indexes.

Using an ordered partitioner is not recommended for the following reasons:

Difficult load balancing

More administrative overhead is required to load balance the cluster. An ordered partitioner requires
administrators to manually calculate partition ranges based on their estimates of the partition key distribution.
In practice, this requires actively moving node tokens around to accommodate the actual distribution of data
once it is loaded.

Sequential writes can cause hot spots

If your application tends to write or update a sequential block of rows at a time, then the writes are not be
distributed across the cluster; they all go to one node. This is frequently a problem for applications dealing
with timestamped data.

Uneven load balancing for multiple tables

If your application has multiple tables, chances are that those tables have different row keys and different
distributions of data. An ordered partitioner that is balanced for one table may cause hot spots and uneven
distribution for another table in the same cluster.

Snitches
A snitch determines which datacenters and racks nodes belong to.

A snitch determines which datacenters and racks nodes belong to. They inform Cassandra about the
network topology so that requests are routed efficiently and allows Cassandra to distribute replicas by
grouping machines into datacenters and racks. Specifically, the replication strategy places the replicas
based on the information provided by the new snitch. All nodes must return to the same rack and
datacenter. Cassandra does its best not to have more than one replica on the same rack (which is not
necessarily a physical location).

Note: If you change snitches, you may need to perform additional steps because the snitch affects where
replicas are placed. See Switching snitches on page 147.

Dynamic snitching
Monitors the performance of reads from the various replicas and chooses the best replica based on this history.

By default, all snitches also use a dynamic snitch layer that monitors read latency and, when possible,
routes requests away from poorly-performing nodes. The dynamic snitch is enabled by default and is
recommended for use in most deployments. For information on how this works, see Dynamic snitching
in Cassandra: past, present, and future. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

For more information, see the properties listed under Failure detection and recovery on page 14.

SimpleSnitch
The SimpleSnitch is used only for single-datacenter deployments.

The SimpleSnitch (default) is used only for single-datacenter deployments. It does not recognize
datacenter or rack information and can be used only for single-datacenter deployments or single-zone in
public clouds. It treats strategy order as proximity, which can improve cache locality when disabling read
repair.

Using a SimpleSnitch, you define the keyspace to use SimpleStrategy and specify a replication factor.

RackInferringSnitch
Determines the location of nodes by rack and datacenter corresponding to the IP addresses.

The RackInferringSnitch determines the proximity of nodes by rack and datacenter, which are assumed to
correspond to the 3rd and 2nd octet of the node's IP address, respectively. This snitch is best used as an
example for writing a custom snitch class (unless this happens to match your deployment conventions).

/en/cql/3.3/cql/cql_using/useCreateTable.html
/en/glossary/doc/glossary/gloss_partition_range.html
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

21

PropertyFileSnitch
Determines the location of nodes by rack and datacenter.

This snitch determines proximity as determined by rack and datacenter. It uses the network details
located in the cassandra-topology.properties file. When using this snitch, you can define your datacenter
names to be whatever you want. Make sure that the datacenter names correlate to the name of your
datacenters in the keyspace definition. Every node in the cluster should be described in the cassandra-
topology.properties file, and this file should be exactly the same on every node in the cluster.

Procedure
If you had non-uniform IPs and two physical datacenters with two racks in each, and a third logical
datacenter for replicating analytics data, the cassandra-topology.properties file might look like
this:

Note: datacenter and rack names are case-sensitive.

datacenter One

175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

datacenter Two

110.56.12.120=DC2:RAC1
110.50.13.201=DC2:RAC1

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

22

110.54.35.184=DC2:RAC1

50.33.23.120=DC2:RAC2
50.45.14.220=DC2:RAC2
50.17.10.203=DC2:RAC2

Analytics Replication Group

172.106.12.120=DC3:RAC1
172.106.12.121=DC3:RAC1
172.106.12.122=DC3:RAC1

default for unknown nodes
default =DC3:RAC1

GossipingPropertyFileSnitch
Automatically updates all nodes using gossip when adding new nodes and is recommended for production.

This snitch is recommended for production. It uses rack and datacenter information for the local node
defined in the cassandra-rackdc.properties file and propagates this information to other nodes via gossip.

The configuration for the GossipingPropertyFileSnitch is contained in the cassandra-
rackdc.properties file.

To configure a node to use GossipingPropertyFileSnitch, edit the cassandra-rackdc.properties file
as follows:

• Define the datacenter and Rack that include this node. The default settings:

dc=DC1
rack=RAC1

Note: datacenter and rack names are case-sensitive.
• To save bandwidth, add the prefer_local=true option. This option tells Cassandra to use the local

IP address when communication is not across different datacenters.

Migrating from the PropertyFileSnitch to the GossipingPropertyFileSnitch

To allow migration from the PropertyFileSnitch, the GossipingPropertyFileSnitch uses the cassandra-
topology.properties file when present. Delete the file after the migration is complete. For more
information about migration, see Switching snitches on page 147.

Note: The GossipingPropertyFileSnitch always loads cassandra-topology.properties
when that file is present. Remove the file from each node on any new cluster or any cluster migrated from
the PropertyFileSnitch.

Ec2Snitch
Use the Ec2Snitch with Amazon EC2 in a single region.

Use the Ec2Snitch for simple cluster deployments on Amazon EC2 where all nodes in the cluster are within
a single region.

In EC2 deployments , the region name is treated as the datacenter name and availability zones are treated
as racks within a datacenter. For example, if a node is in the us-east-1 region, us-east is the datacenter
name and 1 is the rack location. (Racks are important for distributing replicas, but not for datacenter
naming.) Because private IPs are used, this snitch does not work across multiple regions.

If you are using only a single datacenter, you do not need to specify any properties.

If you need multiple datacenters, set the dc_suffix options in the cassandra-rackdc.properties file. Any
other lines are ignored.

Understanding the architecture

23

For example, for each node within the us-east region, specify the datacenter in its cassandra-
rackdc.properties file:

Note: datacenter names are case-sensitive.

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_1_cassandra

• node3

dc_suffix=_1_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in three datacenters for the region:

us-east_1_cassandra
us-east_1_analytics
us-east_1_search

Note: The datacenter naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200.

Keyspace strategy options
When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your
datacenter name.

Ec2MultiRegionSnitch
Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

You must configure settings in both the cassandra.yaml file and the property file (cassandra-
rackdc.properties) used by the Ec2MultiRegionSnitch.

Configuring cassandra.yaml for cross-region communication
The Ec2MultiRegionSnitch uses public IP designated in the broadcast_address to allow cross-region
connectivity. Configure each node as follows:

1. In the cassandra.yaml, set the listen_address to the private IP address of the node, and the
broadcast_address to the public IP address of the node.

This allows Cassandra nodes in one EC2 region to bind to nodes in another region, thus enabling
multiple datacenter support. For intra-region traffic, Cassandra switches to the private IP after
establishing a connection.

2. Set the addresses of the seed nodes in the cassandra.yaml file to that of the public IP. Private IP are
not routable between networks. For example:

seeds: 50.34.16.33, 60.247.70.52

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

24

To find the public IP address, from each of the seed nodes in EC2:

$ curl http://instance-data/latest/meta-data/public-ipv4

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 13.
3. Be sure that the storage_port or ssl_storage_port is open on the public IP firewall.

Configuring the snitch for cross-region communication
In EC2 deployments, the region name is treated as the datacenter name and availability zones are treated
as racks within a datacenter. For example, if a node is in the us-east-1 region, us-east is the datacenter
name and 1 is the rack location. (Racks are important for distributing replicas, but not for datacenter
naming.)

For each node, specify its datacenter in the cassandra-rackdc.properties. The dc_suffix option defines the
datacenters used by the snitch. Any other lines are ignored.

In the example below, there are two cassandra datacenters and each datacenter is named for its
workload. The datacenter naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (datacenter names are case-sensitive.)

Region: us-east Region: us-west

Node and datacenter:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-east datacenters:

us-east_1_cassandra
us-east_2_cassandra
us-east_1_analytics
us-east_1_search

Node and datacenter:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-west datacenters:

us-west_1_cassandra
us-west_2_cassandra
us-west_1_analytics
us-west_1_search

Keyspace strategy options
When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your
datacenter name.

Related information
Install locations on page 71

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Database internals

25

Install location topics.

GoogleCloudSnitch
Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more regions.

Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more
regions. The region is treated as a datacenter and the availability zones are treated as racks within the
datacenter. All communication occurs over private IP addresses within the same logical network.

The region name is treated as the datacenter name and zones are treated as racks within a datacenter.
For example, if a node is in the us-central1-a region, us-central1 is the datacenter name and a is the rack
location. (Racks are important for distributing replicas, but not for datacenter naming.) This snitch can
work across multiple regions without additional configuration.

If you are using only a single datacenter, you do not need to specify any properties.

If you need multiple datacenters, set the dc_suffix options in the cassandra-rackdc.properties file. Any
other lines are ignored.

For example, for each node within the us-central1 region, specify the datacenter in its cassandra-
rackdc.properties file:

Note: datacenter names are case-sensitive.

• node0

dc_suffix=_a_cassandra

• node1

dc_suffix=_a_cassandra

• node2

dc_suffix=_a_cassandra

• node3

dc_suffix=_a_cassandra

• node4

dc_suffix=_a_analytics

• node5

dc_suffix=_a_search

Note: datacenter and rack names are case-sensitive.

CloudstackSnitch
Use the CloudstackSnitch for Apache Cloudstack environments.

Use the CloudstackSnitch for Apache Cloudstack environments. Because zone naming is free-form in
Apache Cloudstack, this snitch uses the widely-used <country> <location> <az> notation.

Database internals
Topics about the Cassandra database.

Storage engine
A description about Cassandra's storage structure and engine.

Cassandra uses a storage structure similar to a Log-Structured Merge Tree, unlike a typical relational
database that uses a B-Tree. Cassandra avoids reading before writing. Read-before-write, especially
in a large distributed system, can result in large latencies in read performance and other problems. For
example, two clients read at the same time; one overwrites the row to make update A, and the other

https://cloud.google.com/
http://cloudstack.apache.org/
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/B-tree

Database internals

26

overwrites the row to make update B, removing update A. This race condition will result in ambiguous
query results - which update is correct?

To avoid using read-before-write for most writes in Cassandra, the storage engine groups inserts and
updates in memory, and at intervals, sequentially writes the data to disk in append mode. Once written
to disk, the data is immutable and is never overwritten. Reading data involves combining this immutable
sequentially-written data to discover the correct query results. You can use Lightweight transactions (LWT)
to check the state of the data before writing. However, this feature is recommended only for limited use.

A log-structured engine that avoids overwrites and uses sequential I/O to update data is essential for
writing to solid-state disks (SSD) and hard disks (HDD). On HDD, writing randomly involves a higher
number of seek operations than sequential writing. The seek penalty incurred can be substantial. Because
Cassandra sequentially writes immutable files, thereby avoiding write amplification and disk failure, the
database accommodates inexpensive, consumer SSDs extremely well. For many other databases, write
amplification is a problem on SSDs.

How Cassandra reads and writes data
Understanding how Cassandra stores data.

To manage and access data in Cassandra, it is important to understand how Cassandra stores data. The
hinted handoff feature plus Cassandra conformance and non-conformance to the ACID (atomic, consistent,
isolated, durable) database properties are key concepts to understand reads and writes. In Cassandra,
consistency refers to how up-to-date and synchronized a row of data is on all of its replicas.

Client utilities and application programming interfaces (APIs) for developing applications for data storage
and retrieval are available.

How is data written?
Understand how Cassandra writes and stores data.

Cassandra processes data at several stages on the write path, starting with the immediate logging of a
write and ending in with a write of data to disk:

• Logging data in the commit log
• Writing data to the memtable
• Flushing data from the memtable
• Storing data on disk in SSTables

Logging writes and memtable storage
When a write occurs, Cassandra stores the data in a memory structure called memtable, and to provide
configurable durability, it also appends writes to the commit log on disk. The commit log receives every
write made to a Cassandra node, and these durable writes survive permanently even if power fails on
a node. The memtable is a write-back cache of data partitions that Cassandra looks up by key. The
memtable stores writes in sorted order until reaching a configurable limit, and then is flushed.

Flushing data from the memtable
To flush the data, Cassandra writes the data to disk, in the memtable-sorted order.. A partition index
is also created on the disk that maps the tokens to a location on disk. When the memtable content
exceeds the configurable threshold or the commitlog space exceeds the commitlog_total_space_in_mb,
the memtable is put in a queue that is flushed to disk. The queue can be configured with the
memtable_heap_space_in_mb or memtable_offheap_space_in_mb setting in the cassandra.yaml file. If
the data to be flushed exceeds the memtable_cleanup_threshold, Cassandra blocks writes until the next
flush succeeds. You can manually flush a table using nodetool flushor nodetool drain (flushes memtables
without listening for connections to other nodes). To reduce the commit log replay time, the recommended
best practice is to flush the memtable before you restart the nodes. If a node stops working, replaying the
commit log restores to the memtable the writes that were there before it stopped.

http://en.wikipedia.org/wiki/Write_amplification
/en/developer/driver-matrix/doc/common/driverMatrix.html

Database internals

27

Data in the commit log is purged after its corresponding data in the memtable is flushed to an SSTable on
disk.

Storing data on disk in SSTables
Memtables and SSTables are maintained per table. The commit log is shared among tables. SSTables are
immutable, not written to again after the memtable is flushed. Consequently, a partition is typically stored
across multiple SSTable files. A number of other SSTable structures exist to assist read operations:

For each SSTable, Cassandra creates these structures:

Data (Data.db)

The SSTable data

Primary Index (Index.db)

Index of the row keys with pointers to their positions in the data file

Bloom filter (Filter.db)

A structure stored in memory that checks if row data exists in the memtable before accessing SSTables
on disk

Compression Information (CompressionInfo.db)

A file holding information about uncompressed data length, chunk offsets and other compression information

Statistics (Statistics.db)

Statistical metadata about the content of the SSTable

Digest (Digest.crc32, Digest.adler32, Digest.sha1)

A file holding adler32 checksum of the data file

CRC (CRC.db)

A file holding the CRC32 for chunks in an a uncompressed file.

SSTable Index Summary (SUMMARY.db)

A sample of the partition index stored in memory

SSTable Table of Contents (TOC.txt)

A file that stores the list of all components for the SSTable TOC

Secondary Index (SI_.*.db)

Built-in secondary index. Multiple SIs may exist per SSTable

The SSTables are files stored on disk. The naming convention for SSTable files has changed with
Cassandra 2.2 and later to shorten the file path. The data files are stored in a data directory that varies

/en/glossary/doc/glossary/gloss_bloom_filter.html

Database internals

28

with installation. For each keyspace, a directory within the data directory stores each table. For example,
/data/data/ks1/cf1-5be396077b811e3a3ab9dc4b9ac088d/la-1-big-Data.db represents a
data file. ks1 represents the keyspace name to distinguish the keyspace for streaming or bulk loading data.
A hexadecimal string, 5be396077b811e3a3ab9dc4b9ac088d in this example, is appended to table names
to represent unique table IDs.

Cassandra creates a subdirectory for each table, which allows you to symlink a table to a chosen physical
drive or data volume. This provides the capability to move very active tables to faster media, such as SSDs
for better performance, and also divides tables across all attached storage devices for better I/O balance at
the storage layer.

How is data maintained?
Cassandra processes data at several stages on the write path. Compaction to maintain healthy SSTables is the last step in the write path process.

The Cassandra write process stores data in files called SSTables. SSTables are immutable. Instead of
overwriting existing rows with inserts or updates, Cassandra writes new timestamped versions of the
inserted or updated data in new SSTables. Cassandra does not perform deletes by removing the deleted
data: instead, Cassandra marks it with tombstones.

Over time, Cassandra may write many versions of a row in different SSTables. Each version may have a
unique set of columns stored, and a different timestamp. This distribution of data could require Cassandra
to access more and more SSTables to retrieve a complete row.

To keep the database healthy, Cassandra periodically merges SSTables and discards old data. This
process is called compaction.

Compaction
Compaction works on a collection of SSTables. From these SSTables, compaction collects all versions of
each unique row and assembles one complete row, using the most up-to-date version (by timestamp) of
each of the row's columns. This merge process is performant. Because rows are sorted by partition key
within each SSTable, the merge process does not use random I/O. These new versions of these rows are
written to a new SSTable. The old versions, along with any rows that are ready for deletion, are left in the
old SSTables. These old SSTable files are deleted as soon as pending reads finish using them.

/en/glossary/doc/glossary/gloss_tombstone.html
/en/glossary/doc/glossary/gloss_partition_key.html

Database internals

29

Compaction causes a temporary spike in disk space usage and disk I/O while old and new SSTables
co-exist. As it completes, compaction frees up disk space occupied by old SSTables. It improves read
performance by incrementally replacing old SSTables with compacted SSTables. Cassandra can read data
directly from the new SSTable even before it finishes writing, instead of waiting for the entire compaction
process to finish.

As Cassandra processes writes and reads, it replaces the old SSTables with new SSTables in the
page cache. The process of caching the new SSTable, while directing reads away from the old one,
is incremental — it does not cause a the dramatic cache miss. Cassandra provides predictable high
performance even under heavy load.

Compaction strategies
Cassandra supports different compaction strategies, which control how which SSTables are chosen for
compaction, and how the compacted rows are sorted into new SSTables. Each strategy has its own
strengths. The sections that follow explain each of Cassandra's compaction strategies.

Database internals

30

Although each of the following sections starts with a generalized recommendation, many factors
complicate the choice of a compaction strategy. See Which compaction strategy is best?.

SizeTieredCompactionStrategy (STCS)

Recommended for write-intensive workloads.

The SizeTieredCompactionStrategy (STCS) initiates compaction when Cassandra has accumulated a set
number (default: 4) of similar-sized SSTables. STCS merges these SSTables into one larger SSTable. As
these larger SSTables accumulate, STCS merges these into even larger SSTables. At any given time,
several SSTables of varying sizes are present.

Figure: Size tiered compaction after many inserts

While STCS works well to compact a write-intensive workload, it makes reads slower because the merge-
by-size process does not group data by rows. This makes it more likely that versions of a particular row may
be spread over many SSTables. Also, STCS does not evict deleted data predictably becauseits trigger for
compaction is SSTable size, and SSTables might not grow quickly enough to merge and evict old data. As
the largest SSTables grow in size, the amount of disk space needed for both the new and old SSTables
simultaneously during STCS compaction can outstrip a typical amount of disk space on a node.

• Pros: Compacts write-intensive workload very well.
• Cons: Can hold onto stale data too long. Amount of memory needed increases over time.

LeveledCompactionStrategy (LCS)

Recommended for read-intensive workloads.

The LeveledCompactionStrategy (LCS) alleviates some of the read operation issues with STCS. This
strategy works with a series of levels. First, data in mmtables is flushed to SSTables in the first level (L0).
LCS compaction merges these first SSTables with larger SSTables in level L1.

Figure: Leveled compaction — adding SSTables

Database internals

31

The SSTables in levels greater than L1 are merged into SSTables with a size greater than or equal to
sstable_size_in_mb (default: 160 MB). If a L1 SSTable stores data of a partition that is larger than L2,
LCS moves the SSTable past L2 to the next level up.

Figure: Leveled compaction after many inserts

In each of the levels above L0, LCS creates SSTables that are about the same size. Each level is 10X the
size of the last level, so level L1 has 10X as many SSTables as L0, and level L2 has 100X as many. If the
result of the compaction is more than 10 SSTables in level L1, the excess SSTables are moved to level L2.

The LCS compaction process guarantees that the SSTables within each level starting with L1 have non-
overlapping data. For many reads, this process enables Cassandra to retrieve all the required data from
only one or two SSTables. In fact, 90% of all reads can be satisfied from one SSTable. Since LCS does not
compact L0 tables, however, resource-intensive reads involving many L0 SStables may still occur.

Database internals

32

At levels beyond L0, LCS requires less disk space for compacting — generally, 10X the fixed size of the
SSTable. Obsolete data is evicted more often, so deleted data uses smaller portions of the SSTables on disk.
However, LCS compaction operations take place more often and place more I/O burden on the node. For
write-intensive workloads, the payoff of using this strategy is generally not worth the performance loss to I/O
operations. In many cases, tests of LCS-configured tables reveal I/O saturation on writes and compactions.

Note: Cassandra bypasses compaction operations when bootstrapping a new node using LCS into a
cluster. The original data is moved directly to the correct level because there is no existing data, so no
partition overlap per level is present. For more information, see Apache Cassandra 2.2 - Bootstrapping
Performance Improvements for Leveled Compaction.

• Pros: Disk requirements are easier to predict. Read operation latency is more predictable. Stale data
is evicted more frequently.

• Cons: Much higher I/O utilization impacting operation latency

DateTieredCompactionStrategy (DTCS)

Recommended for time series and expiring TTL workloads.

The DateTieredCompactionStrategy (DTCS) is similar to STCS. But instead of compacting based on
SSTable size, DTCS compacts based on SSTable age. (Each column in an SSTable is marked with the
timestamp at write time. As the age of an SSTable, DTCS uses the oldest timestamp of any column the
SSTable contains.)

Configuring the DTCS time window ensures that new and old data are not mixed in merged SSTables. In
fact, using Time-To-Live (TTL) timestamps, DTCS can eject whole SSTables containing expired data. This
strategy often generates similar-sized SSTables if time series data is ingested at a steady rate.

DTCS compacts SSTables into larger tables, as in STC, when the system accumulates a configurable
number of SSTables within a configurable time interval. However, DTCS skips compacting SSTables that
reach a configurable age. This logic reduces the number of times data is rewritten. Queries that ask
for data in a particular last time interval, such as an hour, can be executed very efficiently on DTCS-
compacted SSTables (particularly if the requested time interval is coordinated with the configured interval
for compaction).

One usecase that can cause difficulty with this strategy is out-of-order writing. For example, an operation
that writes a timestamped record with a past timestamp. Read repairs can inject out-of-order timestamps,
so be sure to turn off read repairs when using DTCS.

• Pros: Specifically designed for time series data, stored in tables that use the default TTL. DTCS is a
better choice when fine-tuning is required to meet space-related SLAs.

• Cons: Insertion of records out of time order (by repairs or hint replaying) can increase latency or cause
errors. In some cases, it may be necessary to turn off read repair and carefully test and control the use
of TIMESTAMP options in BATCH, DELETE, INSERT and UPDATE CQL commands.

TimeWindowCompactionStrategy (TWCS)

The TimeWindowCompactionStrategy (TWCS) is similar to DTCS. TWCS groups SSTables using a
series of time windows or buckets. During its operation, TWCS applies SizeTieredCompactionStrategy to
uncompacted SSTables in the most recent time window. TWCS compacts SSTables that fall into the next
time window into a single SSTable. SSTables that fall into older time windows are not subject to further
compaction. At the next compaction, TWCS handles the newest SSTables, and older SSTables, in the
same way.

/en/glossary/doc/glossary/gloss_bootstrap.html
http://www.datastax.com/dev/blog/bootstrapping-performance-improvements-for-leveled-compaction
http://www.datastax.com/dev/blog/bootstrapping-performance-improvements-for-leveled-compaction

Database internals

33

Database internals

34

As the figure shows, from 10 to 11AM, the memtables are flushed from memory into 100MB SSTables.
These SSTables are compacted into larger SSTables using STCS. At 11, all these SSTables are compacted
into a single SSTable, and never compacted again by TWCS. At 12, the new SSTables created between
11 and 12 are compacted using STCS, and at the end of the time window the TWCS compaction repeats.
Notice that each TWCS time window contains varying amounts of data.

Note: For an animated explanation, see the Datastax Academy Time Window Compaction Strategy video.

The TWCS configuration has two main property settings:

• compaction_window_unit: time unit used to define the bucket size (milliseconds, seconds, hours, and
so on)

• compaction_window_size: how many units per bucket (1,2,3, and so on)

The configuration for the above example: compaction_window_unit =
‘minutes’,compaction_window_size = 60

Pros: Used for time series data, stored in tables that use the default TTL for all data. Simpler configuration
than that of DTCS.

Cons: Less fine-tuned configuration is possible than with DTCS.

Which compaction strategy is best?
To implement the best compaction strategy:

1. Review your application's requirements.
2. Configure the table to use the most appropriate strategy.
3. Test the compaction strategies against your data.

The following questions are based on the experiences of Cassandra developers and users with the
strategies described above.

Does your table process time series data?

If so, your best choices are DTCS or TWCS. For details, read the descriptions on this page.

If your table is not focused on time series data, the choice becomes more complicated The following
questions introduce other considerations that may guide your choice.

Does your table handle more reads than writes, or more writes than reads?

LCS is a good choice if your table processes twice as many reads as writes or more – especially randomized
reads. If the proportion of reads to writes is closer, the performance hit exacted by LCS may not be worth
the benefit. Be aware that LCS can be quickly overwhelmed by a high volume of writes.

Does the data in your table change often?

One advantage of LCS is that it keeps related data in a small set of SSTables. If your data is immutable or not
subject to frequent upserts, STCS accomplishes the same type of grouping without the LCS performance hit.

Do you require predictable levels of read and write activity?

LCS keeps the SSTables within predictable sizes and numbers. For example, if your table's read/write ratio
is small, and it is expected to conform to a Service Level Agreements (SLAs) for reads, it may be worth
taking the write performance penalty of LCS in order to keep read rates and latency at predictable levels.
And you may be able to overcome this write penalty through horizontal scaling — adding more nodes.

Will your table be populated by a batch process?

On both batch reads and batch writes, STCS performs better than LCS. The batch process causes little
or no fragmentation, so the benefits of LCS are not realized. And batch processes can overwhelm LCS-
configured tables.

Does your system have limited disk space?

https://academy.datastax.com/courses/ds210-datastax-enterprise-operations-apache-cassandra/time-windowed-compaction
/en/glossary/doc/glossary/gloss_upsert.html

Database internals

35

LCS handles disk space more efficiently than STCS: it requires about 10% headroom in addition to the
space occupied by the data is handles. STCS and DTCS generally require more — in some cases. 50%
more than the data space.

Is your system reaching its limits for I/O?

LCS is significantly more I/O intensive than DTCS or STCS. Switching to LCS may introduce extra I/O load
that offsets the advantages.

Testing compaction strategies
Suggestions for determining which compaction strategy is best for your system:

• Create a three-node cluster using one of the compaction strategies, stress test the cluster using
cassandra-stress, and measure the results.

• Set up a node on your existing cluster and use Cassandra's write survey mode to sample live data. See
What’s new in Cassandra 1.1: live traffic sampling.

Configuring and running compaction
Set the compaction strategy for a table in the parameters for the CREATE TABLE or ALTER TABLE
command. For details, see Table properties.

You can start compaction manually using the nodetool compact command.

More information about compaction
The following blog posts provide more information from developers that have tested compaction strategies:

• When to Use Leveled Compaction
• Leveled compaction in Apache Cassandra
• DateTieredCompactionStrategy: Notes from the Field
• Date-Tiered Compaction in Cassandra
• DateTieredCompactionStrategy: Compaction for Time Series Data.
• What delays a tombstone purge when using LCS in Cassandra

How is data updated?
A brief description of how Cassandra updates data.

Cassandra treats each new row as an upsert: if the new row has the same primary key as that of an
existing row, Cassandra processes it as an update to the existing row.

During a write, Cassandra adds each new row to the database without checking on whether a duplicate
record exists. This policy makes it possible that many versions of the same row may exist in the database.
For more details about writes, see How is data written?

Periodically, the rows stored in memory are streamed to disk into structures called SSTables. At certain
intervals, Cassandra compacts smaller SSTables into larger SSTables. If Cassandra encounters two or
more versions of the same row during this process, Cassandra only writes the most recent version to the
new SSTable. After compaction, Cassandra drops the original SSTables, deleting the outdated rows.

Most Cassandra installations store replicas of each row on two or more nodes. Each node performs
compaction independently. This means that even though out-of-date versions of a row have been dropped
from one node, they may still exist on another node.

This is why Cassandra performs another round of comparisons during a read process. When a client
requests data with a particular primary key, Cassandra retrieves many versions of the row from one or
more replicas. The version with the most recent timestamp is the only one returned to the client ("last-write-
wins").

http://www.datastax.com/dev/blog/whats-new-in-cassandra-1-1-live-traffic-sampling
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/dtcs-notes-from-the-field
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
http://stackoverflow.com/questions/27862808/what-delays-a-tombstone-purge-when-using-lcs-in-cassandra
/en/glossary/doc/glossary/gloss_upsert.html

Database internals

36

Note: Some database operations may only write partial updates of a row, so some versions of a row may
include some columns, but not all. During a compaction or write, Cassandra assembles a complete version
of each row from the partial updates, using the most recent version of each column.

How is data deleted?
How Cassandra deletes data and why deleted data can reappear.

Cassandra's processes for deleting data are designed to improve performance, and to work with
Cassandra's built-in properties for data distribution and fault-tolerance.

Cassandra treats a delete as an insert or upsert. The data being added to the partition in the DELETE
command is a deletion marker called a tombstone. The tombstones go through Cassandra's write path,
and are written to SSTables on one or more nodes. The key difference feature of a tombstone: it has a
built-in expiration date/time. At the end of its expiration period (for details see below) the tombstone is
deleted as part of Cassandra's normal compaction process.

You can also mark a Cassandra record (row or column) with a time-to-live value. After this amount of time
has ended, Cassandra marks the record with a tombstone, and handles it like other tombstoned records.

Deletion in a distributed system
In a multi-node cluster, Cassandra can store replicas of the same data on two or more nodes. This
helps prevent data loss, but it complicates the delete process. If a node receives a delete for data it
stores locally, the node tombstones the specified record and tries to pass the tombstone to other nodes
containing replicas of that record. But if one replica node is unresponsive at that time, it does not receive
the tombstone immediately, so it still contains the pre-delete version of the record. If the tombstoned record
has already been deleted from the rest of the cluster befor that node recovers, Cassandra treats the record
on the recovered node as new data, and propagates it to the rest of the cluster. This kind of deleted but
persistent record is called a zombie.

To prevent the reappearance of zombies, Cassandra gives each tombstone a grace period. The purpose
of the grace period is to give unresponsive nodes time to recover and process tombstones normally. If
a client writes a new update to the tombstoned record during the grace period, Cassandra overwrites
the tombstone. If a client sends a read for that record during the grace period, Cassandra disregards the
tombstone and retrieves the record from other replicas if possible.

When an unresponsive node recovers, Cassandra uses hinted handoff to replay the database mutations
the node missed while it was down. Cassandra does not replay a mutation for a tombstoned record during
its grace period. But if the node does not recover until after the grace period ends, Cassandra may miss
the deletion.

After the tombstone's grace period ends, Cassandra deletes the tombstone during compaction.

The grace period for a tombstone is set by the property gc_grace_seconds. Its default value is 864000
seconds (ten days). Each table can have its own value for this property.

More about Cassandra deletes
Details:

• The expiration date/time for a tombstone is the date/time of its creation plus the value of the table
property gc_grace_seconds.

• Cassandra also supports Batch data insertion and updates. This procedure also introduces the
danger of replaying a record insertion after that record has been removed from the rest of the cluster.
Cassandra does not replay a batched mutation for a tombstoned record that is still within its grace
period.

• On a single-node cluster, you can set gc_grace_seconds to 0 (zero).
• To completely prevent the reappearance of zombie records, run nodetool repair on a node after it

recovers, and on each table every gc_grace_seconds.

/en/glossary/doc/glossary/gloss_upsert.html
/en/cql/3.3/cql/cql_reference/delete_r.html
/en/glossary/doc/glossary/gloss_tombstone.html
/en/cql/3.3/cql/cql_using/useTTL.html
/en/glossary/doc/glossary/gloss_zombie.html
/en/glossary/doc/glossary/gloss_mutation.html
/en/cql/3.3/cql/cql_reference/tabProp.html
/en/cql/3.3/cql/cql_reference/tabProp.html
/en/cql/3.3/cql/cql_using/useBatchTOC.html

Database internals

37

• If all records in a table are given a TTL at creation, and all are allowed to expire and not deleted
manually, it is not necessary to run nodetool repair for that table on a regular basis.

• If you use the SizeTieredCompactionStrategy or DateTieredCompactionStrategy, you can delete
tombstones immediately by manually starting the compaction process.

CAUTION: If you force compaction, Cassandra may create one very large SSTable from all the data.
Cassandra will not trigger another compaction for a long time. The data in the SSTable created during
the forced compaction can grow very stale during this long period of non-compaction.

• Cassandra allows you to set a default_time_to_live property for an entire table. Columns and rows
marked with regular TTLs are processed as described above; but when a record exceeds the table-
level TTL, Cassandra deletes it immediately, without tombstoning or compaction.

• Cassandra supports immediate deletion through the DROP KEYSPACE and DROP TABLE statements.

How are indexes stored and updated?
A brief description of how Cassandra stores and distributes indexes.

Secondary indexes are used to filter a table for data stored in non-primary key columns. For example, a
table storing cyclist names and ages using the last name of the cyclist as the primary key might have a
secondary index on the age to allow queries by age. Querying to match a non-primary key column is an
anti-pattern, as querying should always result in a continuous slice of data retrieved from the table.

If the table rows are stored based on last names, the table may be spread across several partitions stored
on different nodes. Queries based on a particular range of last names, such as all cyclists with the last
name Matthews will retrieve sequential rows from the table, but a query based on the age, such as all
cyclists who are 28, will require all nodes to be queried for a value. Non-primary keys play no role in
ordering the data in storage, thus querying for a particular value of a non-primary key column results in
scanning all partitions. Scanning all partitions generally results in a prohibitive read latency, and is not
allowed.

Secondary indexes can be built for a column in a table. These indexes are stored locally on each node in a
hidden table and built in a background process. If a secondary index is used in a query that is not restricted
to a particular partition key, the query will have prohibitive read latency because all nodes will be queried.
A query with these parameters is only allowed if the query option ALLOW FILTERING is used. This option
is not appropriate for production environments. If a query includes both a partition key condition and a
secondary index column condition, the query will be successful because the query can be directed to a
single node partition.

This technique, however, does not guarantee trouble-free indexing, so know when and when not to use an
index. In the example shown above, an index on the age could be used, but a better solution is to create a
materialized view or additional table that is ordered by age.

As with relational databases, keeping indexes up to date uses processing time and resources, so
unnecessary indexes should be avoided. When a column is updated, the index is updated as well. If the

/en/cql/3.3/cql/cql_reference/tabProp.html
/en/cql/3.3/cql/cql_reference/drop_keyspace_r.html
/en/cql/3.3/cql/cql_reference/drop_table_r.html
/en/cql/3.3/cql/cql_using/useWhenIndex.html
/en/cql/3.3/cql/cql_using/useWhenIndex.html

Database internals

38

old column value still exists in the memtable, which typically occurs when updating a small set of rows
repeatedly, Cassandra removes the corresponding obsolete index entry; otherwise, the old entry remains
to be purged by compaction. If a read sees a stale index entry before compaction purges it, the reader
thread invalidates it.

How is data read?
How Cassandra combines results from the active memtable and potentially multiple SSTables to satisfy a read.

To satisfy a read, Cassandra must combine results from the active memtable and potentially multiple
SSTables.

Cassandra processes data at several stages on the read path to discover where the data is stored, starting
with the data in the memtable and finishing with SSTables:

• Check the memtable
• Check row cache, if enabled
• Checks Bloom filter
• Checks partition key cache, if enabled
• Goes directly to the compression offset map if a partition key is found in the partition key cache, or

checks the partition summary if not

If the partition summary is checked, then the partition index is accessed
• Locates the data on disk using the compression offset map
• Fetches the data from the SSTable on disk

Figure: Read request flow

Figure: Row cache and Key cache request flow

Database internals

39

Memtable
If the memtable has the desired partition data, then the data is read and then merged with the data from
the SSTables. The SSTable data is accessed as shown in the following steps.

Row Cache
Typical of any database, reads are fastest when the most in-demand data fits into memory. The operating
system page cache is best at improving performance, although the row cache can provide some
improvement for very read-intensive operations, where read operations are 95% of the load. Row cache is
contra-indicated for write-intensive operations. The row cache, if enabled, stores a subset of the partition
data stored on disk in the SSTables in memory. In Cassandra 2.2 and later, it is stored in fully off-heap
memory using a new implementation that relieves garbage collection pressure in the JVM. The subset
stored in the row cache use a configurable amount of memory for a specified period of time. The row cache
uses LRU (least-recently-used) eviction to reclaim memory when the cache has filled up.

The row cache size is configurable, as is the number of rows to store. Configuring the number of rows to
be stored is a useful feature, making a "Last 10 Items" query very fast to read. If row cache is enabled,
desired partition data is read from the row cache, potentially saving two seeks to disk for the data. The
rows stored in row cache are frequently accessed rows that are merged and saved to the row cache from
the SSTables as they are accessed. After storage, the data is available to later queries. The row cache is
not write-through. If a write comes in for the row, the cache for that row is invalidated and is not cached
again until the row is read. Similarly, if a partition is updated, the entire partition is evicted from the cache.
When the desired partition data is not found in the row cache, then the Bloom filter is checked.

Bloom Filter
First, Cassandra checks the Bloom filter to discover which SSTables are likely to have the request partition
data. The Bloom filter is stored in off-heap memory. Each SSTable has a Bloom filter associated with it.
A Bloom filter can establish that a SSTable does not contain certain partition data. A Bloom filter can also
find the likelihood that partition data is stored in a SSTable. It speeds up the process of partition key lookup
by narrowing the pool of keys. However, because the Bloom filter is a probabilistic function, it can result in
false positives. Not all SSTables identified by the Bloom filter will have data. If the Bloom filter does not rule
out an SSTable, Cassandra checks the partition key cache

/en/glossary/doc/glossary/gloss_bloom_filter.html

Database internals

40

The Bloom filter grows to approximately 1-2 GB per billion partitions. In the extreme case, you can have
one partition per row, so you can easily have billions of these entries on a single machine. The Bloom filter
is tunable if you want to trade memory for performance.

Partition Key Cache
The partition key cache, if enabled, stores a cache of the partition index in off-heap memory. The key
cache uses a small, configurable amount of memory, and each "hit" saves one seek during the read
operation. If a partition key is found in the key cache can go directly to the compression offset map to find
the compressed block on disk that has the data. The partition key cache functions better once warmed,
and can greatly improve over the performance of cold-start reads, where the key cache doesn't yet have
or has purged the keys stored in the key cache. It is possible to limit the number of partition keys saved in
the key cache, if memory is very limited on a node. If a partition key is not found in the key cache, then the
partition summary is searched.

The partition key cache size is configurable, as are the number of partition keys to store in the key cache.

Partition Summary
The partition summary is an off-heap in-memory structure that stores a sampling of the partition index. A
partition index contains all partition keys, whereas a partition summary samples every X keys, and maps
the location of every Xth key's location in the index file. For example, if the partition summary is set to
sample every 20 keys, it will store the location of the first key as the beginning of the SSTable file, the 20th
key and its location in the file, and so on. While not as exact as knowing the location of the partition key,
the partition summary can shorten the scan to find the partition data location. After finding the range of
possible partition key values, the partition index is searched.

By configuring the sample frequency, you can trade memory for performance, as the more granularity
the partition summary has, the more memory it will use. The sample frequency is changed using the
index interval property in the table definition. A fixed amount of memory is configurable using the
index_summary_capacity_in_mb property, and defaults to 5% of the heap size.

Partition Index
The partition index resides on disk and stores an index of all partition keys mapped to their offset. If the
partition summary has been checked for a range of partition keys, now the search passes to the partition
index to seek the location of the desired partition key. A single seek and sequential read of the columns
over the passed-in range is performed. Using the information found, the partition index now goes to the
compression offset map to find the compressed block on disk that has the data. If the partition index must
be searched, two seeks to disk will be required to find the desired data.

Compression offset map
The compression offset map stores pointers to the exact location on disk that the desired partition data will
be found. It is stored in off-heap memory and is accessed by either the partition key cache or the partition
index. The desired compressed partition data is fetched from the correct SSTable(s) once the compression
offset map identifies the disk location. The query receives the result set.

Note: Within a partition, all rows are not equally expensive to query. The very beginning of the partition
(the first rows, clustered by your key definition) is slightly less expensive to query because there is no need
to consult the partition-level index.

The compression offset map grows to 1-3 GB per terabyte compressed. The more you compress data, the
greater number of compressed blocks you have and the larger the compression offset table. Compression
is enabled by default even though going through the compression offset map consumes CPU resources.
Having compression enabled makes the page cache more effective, and typically, almost always pays off.

/en/glossary/doc/glossary/gloss_index_summary.html
/en/glossary/doc/glossary/gloss_primary_index.html
/en/cql/3.3/cql/cql_reference/tabProp.html

Database internals

41

How do write patterns affect reads?
A brief description about how write patterns affect reads.

It is important to consider how the write operations will affect the read operations in the cluster. The type
of compaction strategy Cassandra performs on your data is configurable and can significantly affect
read performance. Using the SizeTieredCompactionStrategy or DateTieredCompactionStrategy tends to
cause data fragmentation when rows are frequently updated. The LeveledCompactionStrategy (LCS) was
designed to prevent fragmentation under this condition.

Data consistency
Topics about how up-to-date and synchronized a row of data is on all replicas.

How are consistent read and write operations handled?
An introduction to how Cassandra extends eventual consistency with tunable consistency to vary the consistency of data read and written.

Consistency refers to how up-to-date and synchronized all replicas of a row of Cassandra data are at any
given moment. Ongoing repair operations in Cassandra ensure that all replicas of a row will eventually
be consistent. Repairs work to decrease the variability in replica data, but constant data traffic through
a widely distributed system can lead to inconsistency (stale data) at any given time. Cassandra is a AP
system according to the CAP theorem, providing high availability and partition tolerance. Cassandra
does have flexibility in its configuration, though, and can perform more like a CP (consistent and partition
tolerant) system according to the CAP theorem, depending on the application requirements. Two
consistency features are tunable consistency and linearizable consistency.

Tunable consistency
To ensure that Cassandra can provide the proper levels of consistency for its reads and writes, Cassandra
extends the concept of eventual consistency by offering tunable consistency. You can tune Cassandra's
consistency level per-operation, or set it globally for a cluster or datacenter. You can vary the consistency
for individual read or write operations so that the data returned is more or less consistent, as required by
the client application. This allows you to make Cassandra act more like a CP (consistent and partition
tolerant) or AP (highly available and partition tolerant) system according to the CAP theorem, depending on
the application requirements.

Note: It is not possible to "tune" Cassandra into a completely CA system. See You Can't Sacrifice
Partition Tolerance for a more detailed discussion.

There is a tradeoff between operation latency and consistency: higher consistency incurs higher latency,
lower consistency permits lower latency. You can control latency by tuning consistency.

The consistency level determines the number of replicas that need to acknowledge the read or write
operation success to the client application. For read operations, the read consistency level specifies
how many replicas must respond to a read request before returning data to the client application. If a
read operation reveals inconsistency among replicas, Cassandra initiates a read repair to update the
inconsistent data.

For write operations, the write consistency level specified how many replicas must respond to a write
request before the write is considered successful. Even at low consistency levels, Cassandra writes to
all replicas of the partition key, including replicas in other datacenters. The write consistency level just
specifies when the coordinator can report to the client application that the write operation is considered
completed. Write operations will use hinted handoffs to ensure the writes are completed when replicas are
down or otherwise not responsive to the write request.

Typically, a client specifies a consistency level that is less than the replication factor specified by
the keyspace. Another common practice is to write at a consistency level of QUORUM and read at
a consistency level of QUORUM. The choices made depend on the client application's needs, and
Cassandra provides maximum flexibility for application design.

https://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/Eventual_consistency
https://codahale.com/you-cant-sacrifice-partition-tolerance/
https://codahale.com/you-cant-sacrifice-partition-tolerance/

Database internals

42

Linearizable consistency
In ACID terms, linearizable consistency (or serial consistency) is a serial (immediate) isolation level
for lightweight transactions. Cassandra does not use employ traditional mechanisms like locking or
transactional dependencies when concurrently updating multiple rows or tables.

However, some operations must be performed in sequence and not interrupted by other operations. For
example, duplications or overwrites in user account creation can have serious consequences. Situations
like race conditions (two clients updating the same record) can introduce inconsistency across replicas.
Writing with high consistency does nothing to reduce this. You can apply linearizable consistency to a
unique identifier, like the userID or email address, although is not required for all aspects of the user's
account. Serial operations for these elements can be implemented in Cassandra with the Paxos consensus
protocol, which uses a quorum-based algorithm. Lightweight transactions can be implemented without the
need for a master database or two-phase commit process.

Lightweight transaction write operations use the serial consistency level for Paxos consensus and the
regular consistency level for the write to the table. For more information, see Lightweight Transactions.

Calculating consistency
Reliability of read and write operations depends on the consistency used to verify the operation. Strong
consistency can be guaranteed when the following condition is true:

R + W > N

where

• R is the consistency level of read operations
• W is the consistency level of write operations
• N is the number of replicas

If the replication factor is 3, then the consistency level of the reads and writes combined must be at least
4. For example, read operations using 2 out of 3 replicas to verify the value, and write operations using 2
out of 3 replicas to verify the value will result in strong consistency. If fast write operations are required, but
strong consistency is still desired, the write consistency level is lowered to 1, but now read operations have
to verify a matched value on all 3 replicas. Writes will be fast, but reads will be slower.

Eventual consistency occurs if the following condition is true:

R + W =< N

where

• R is the consistency level of read operations
• W is the consistency level of write operations
• N is the number of replicas

If the replication factor is 3, then the consistency level of the reads and writes combined are 3 or less. For
example, read operations using QUORUM (2 out of 3 replicas) to verify the value, and write operations
using ONE (1 out of 3 replicas) to do fast writes will result in eventual consistency. All replicas will receive
the data, but read operations are more vulnerable to selecting data before all replicas write the data.

Additional consistency examples:
• You do a write at ONE, the replica crashes one second later. The other messages are not delivered.

The data is lost.
• You do a write at ONE, and the operation times out. Future reads can return the old or the new value.

You will not know the data is incorrect.
• You do a write at ONE, and one of the other replicas is down. The node comes back online. The

application will get old data from that node until the node gets the correct data or a read repair occurs.

Database internals

43

• You do a write at QUORUM, and then a read at QUORUM. One of the replicas dies. You will always get
the correct data.

How are Cassandra transactions different from RDBMS
transactions?

Cassandra does not use RDBMS ACID transactions with rollback or locking mechanisms, but instead
offers atomic, isolated, and durable transactions with eventual/tunable consistency that lets the user decide
how strong or eventual they want each transaction’s consistency to be.

As a non-relational database, Cassandra does not support joins or foreign keys, and consequently does
not offer consistency in the ACID sense. For example, when moving money from account A to B the total
in the accounts does not change. Cassandra supports atomicity and isolation at the row-level, but trades
transactional isolation and atomicity for high availability and fast write performance. Cassandra writes are
durable.

Atomicity
In Cassandra, a write operation is atomic at the partition level, meaning the insertions or updates of two or
more rows in the same partition are treated as one write operation. A delete operation is also atomic at the
partition level.

For example, if using a write consistency level of QUORUM with a replication factor of 3, Cassandra will
replicate the write to all nodes in the cluster and wait for acknowledgement from two nodes. If the write fails
on one of the nodes but succeeds on the other, Cassandra reports a failure to replicate the write on that
node. However, the replicated write that succeeds on the other node is not automatically rolled back.

Cassandra uses client-side timestamps to determine the most recent update to a column. The latest
timestamp always wins when requesting data, so if multiple client sessions update the same columns in a
row concurrently, the most recent update is the one seen by readers.

Isolation
Cassandra write and delete operations are performed with full row-level isolation. This means that a write
to a row within a single partition on a single node is only visible to the client performing the operation –
the operation is restricted to this scope until it is complete. All updates in a batch operation belonging to
a given partition key have the same restriction. However, a Batch operation is not isolated if it includes
changes to more than one partition.

Durability
Writes in Cassandra are durable. All writes to a replica node are recorded both in memory and in a commit
log on disk before they are acknowledged as a success. If a crash or server failure occurs before the
memtables are flushed to disk, the commit log is replayed on restart to recover any lost writes. In addition
to the local durability (data immediately written to disk), the replication of data on other nodes strengthens
durability.

You can manage the local durability to suit your needs for consistency using the commitlog_sync option in
the cassandra.yaml file. Set the option to either periodic or batch.

How do I accomplish lightweight transactions with linearizable
consistency?

A description about lightweight transactions and when to use them.

Distributed databases present a unique challenge when data must be strictly read and written in sequential
order. In transactions for creating user accounts or transferring money, race conditions between two
potential writes must be regulated to ensure that one write precedes the other. In Cassandra, the Paxos
consensus protocol is used to implement lightweight transactions that can handle concurrent operations.

Database internals

44

The Paxos protocol is implemented in Cassandra with linearizable consistency, that is sequential
consistency with real-time constraints. Linearizable consistency ensures transaction isolation at a level
similar to the serializable level offered by RDBMSs. This type of transaction is known as compare and set
(CAS); replica data is compared and any data found to be out of date is set to the most consistent value. In
Cassandra, the process combines the Paxos protocol with normal read and write operations to accomplish
the compare and set operation.

The Paxos protocol is implemented as a series of phases:

1. Prepare/Promise
2. Read/Results
3. Propose/Accept
4. Commit/Acknowledge

These phases are actions that take place between a proposer and acceptors. Any node can be a proposer,
and multiple proposers can be operating at the same time. For simplicity, this description will use only one
proposer. A proposer prepares by sending a message to a quorum of acceptors that includes a proposal
number. Each acceptor promises to accept the proposal if the proposal number is the highest they have
received. Once the proposer receives a quorum of acceptors who promise, the value for the proposal
is read from each acceptor and sent back to the proposer. The proposer figures out which value to use
and proposes the value to a quorum of the acceptors along with the proposal number. Each acceptor
accepts the proposal with a certain number if and only if the acceptor is not already promised to a proposal
with a high number. The value is committed and acknowledged as a Cassandra write operation if all the
conditions are met.

These four phases require four round trips between a node proposing a lightweight transaction and any
cluster replicas involved in the transaction. Performance will be affected. Consequently, reserve lightweight
transactions for situations where concurrency must be considered.

Lightweight transactions will block other lightweight transactions from occurring, but will not stop normal
read and write operations from occurring. Lightweight transactions use a timestamping mechanism
different than for normal operations and mixing LWTs and normal operations can result in errors. If
lightweight transactions are used to write to a row within a partition, only lightweight transactions for both
read and write operations should be used. This caution applies to all operations, whether individual or
batched. For example, the following series of operations can fail:

DELETE ...
INSERT IF NOT EXISTS
SELECT

The following series of operations will work:

DELETE ... IF EXISTS
INSERT IF NOT EXISTS
SELECT

Reads with linearizable consistency
A SERIAL consistency level allows reading the current (and possibly uncommitted) state of data without
proposing a new addition or update. If a SERIAL read finds an uncommitted transaction in progress,
Cassandra performs a read repair as part of the commit.

How do I discover consistency level performance?
Use tracing to discover what the consistency level is currently set to, and how it affects performance.

Before changing the consistency level on read and write operations, discover how your CQL commands
are performing using the TRACING command in CQL. Using cqlsh, you can vary the consistency level
and trace read and write operations. The tracing output includes latency times for the operations.

The CQL documentation includes a tutorial comparing consistency levels.

/en/glossary/doc/glossary/gloss_read_repair.html
/en/cql/3.3/cql/cql_using/useTracingTrace.html

Database internals

45

How is the consistency level configured?
Consistency levels in Cassandra can be configured to manage availability versus data accuracy.

Consistency levels in Cassandra can be configured to manage availability versus data accuracy. You
can configure consistency on a cluster, datacenter, or per individual read or write operation. Consistency
among participating nodes can be set globally and also controlled on a per-operation basis. Within
cqlsh, use CONSISTENCY, to set the consistency level for all queries in the current cqlsh session. For
programming client applications, set the consistency level using an appropriate driver. For example, using
the Java driver, call QueryBuilder.insertInto with setConsistencyLevel to set a per-insert
consistency level.

The consistency level defaults to ONE for all write and read operations.

Write consistency levels
This table describes the write consistency levels in strongest-to-weakest order.

Table: Write Consistency Levels

Level Description Usage

ALL A write must be written to the commit log
and memtable on all replica nodes in the
cluster for that partition.

Provides the highest consistency and the
lowest availability of any other level.

EACH_QUORUMStrong consistency. A write must be
written to the commit log and memtable
on a quorum of replica nodes in
eachdatacenters.

Used in multiple datacenter clusters to
strictly maintain consistency at the same
level in each datacenter. For example,
choose this level if you want a read to fail
when a datacenter is down and the QUORUM
cannot be reached on that datacenter.

QUORUM A write must be written to the commit log
and memtable on a quorum of replica nodes
across all datacenters.

Used in either single or multiple datacenter
clusters to maintain strong consistency
across the cluster. Use if you can tolerate
some level of failure.

LOCAL_QUORUMStrong consistency. A write must be written
to the commit log and memtable on a
quorum of replica nodes in the same
datacenter as the coordinator. Avoids
latency of inter-datacenter communication.

Used in multiple datacenter clusters with
a rack-aware replica placement strategy,
such as NetworkTopologyStrategy, and
a properly configured snitch. Use to
maintain consistency locally (within the
single datacenter). Can be used with
SimpleStrategy.

ONE A write must be written to the commit log
and memtable of at least one replica node.

Satisfies the needs of most users because
consistency requirements are not stringent.

TWO A write must be written to the commit log
and memtable of at least two replica nodes.

Similar to ONE.

THREE A write must be written to the commit log
and memtable of at least three replica
nodes.

Similar to TWO.

LOCAL_ONE A write must be sent to, and successfully
acknowledged by, at least one replica node
in the local datacenter.

In a multiple datacenter clusters, a
consistency level of ONE is often desirable,
but cross-DC traffic is not. LOCAL_ONE
accomplishes this. For security and quality
reasons, you can use this consistency
level in an offline datacenter to prevent

/en/cql/3.3/cql/cql_reference/consistency_r.html
/en/glossary/doc/glossary/gloss_data_center.html
/en/glossary/doc/glossary/gloss_coordinator_node.html

Database internals

46

Level Description Usage

automatic connection to online nodes in
other datacenters if an offline node goes
down.

ANY A write must be written to at least one node.
If all replica nodes for the given partition key
are down, the write can still succeed after a
hinted handoff has been written. If all replica
nodes are down at write time, an ANY write
is not readable until the replica nodes for
that partition have recovered.

Provides low latency and a guarantee that
a write never fails. Delivers the lowest
consistency and highest availability.

Read consistency levels
This table describes read consistency levels in strongest-to-weakest order.

Table: Read Consistency Levels

Level Description Usage

ALL Returns the record after all replicas have
responded. The read operation will fail if a
replica does not respond.

Provides the highest consistency of all
levels and the lowest availability of all
levels.

EACH_QUORUMNot supported for reads.

QUORUM Returns the record after a quorum
of replicas from all datacenters has
responded.

Used in either single or multiple datacenter
clusters to maintain strong consistency
across the cluster. Ensures strong
consistency if you can tolerate some level of
failure.

LOCAL_QUORUMReturns the record after a quorum of
replicas in the current datacenter as the
coordinator has reported. Avoids latency of
inter-datacenter communication.

Used in multiple datacenter clusters with
a rack-aware replica placement strategy
(NetworkTopologyStrategy) and a
properly configured snitch. Fails when using
SimpleStrategy.

ONE Returns a response from the closest replica,
as determined by the snitch. By default, a
read repair runs in the background to make
the other replicas consistent.

Provides the highest availability of all the
levels if you can tolerate a comparatively
high probability of stale data being read.
The replicas contacted for reads may not
always have the most recent write.

TWO Returns the most recent data from two of
the closest replicas.

Similar to ONE.

THREE Returns the most recent data from three of
the closest replicas.

Similar to TWO.

LOCAL_ONE Returns a response from the closest replica
in the local datacenter.

Same usage as described in the table about
write consistency levels.

SERIAL Allows reading the current (and possibly
uncommitted) state of data without
proposing a new addition or update. If
a SERIAL read finds an uncommitted
transaction in progress, it will commit the

To read the latest value of a column
after a user has invoked a lightweight
transaction to write to the column, use
SERIAL. Cassandra then checks the inflight
lightweight transaction for updates and, if
found, returns the latest data.

/en/glossary/doc/glossary/gloss_data_center.html
/en/glossary/doc/glossary/gloss_coordinator_node.html
/en/glossary/doc/glossary/gloss_read_repair.html

Database internals

47

Level Description Usage

transaction as part of the read. Similar to
QUORUM.

LOCAL_SERIALSame as SERIAL, but confined to the
datacenter. Similar to LOCAL_QUORUM.

Used to achieve linearizable consistency for
lightweight transactions.

How QUORUM is calculated
The QUORUM level writes to the number of nodes that make up a quorum. A quorum is calculated, and then
rounded down to a whole number, as follows:

quorum = (sum_of_replication_factors / 2) + 1

The sum of all the replication_factor settings for each datacenter is the
sum_of_replication_factors.

sum_of_replication_factors = datacenter1_RF + datacenter2_RF + . . . +
 datacentern_RF

Examples:

• Using a replication factor of 3, a quorum is 2 nodes. The cluster can tolerate 1 replica down.
• Using a replication factor of 6, a quorum is 4. The cluster can tolerate 2 replicas down.
• In a two datacenter cluster where each datacenter has a replication factor of 3, a quorum is 4 nodes.

The cluster can tolerate 2 replica nodes down.
• In a five datacenter cluster where two datacenters have a replication factor of 3 and three datacenters

have a replication factor of 2, a quorum is 7 nodes.

The more datacenters, the higher number of replica nodes need to respond for a successful operation.

Similar to QUORUM, the LOCAL_QUORUM level is calculated based on the replication factor of the same
datacenter as the coordinator node. That is, even if the cluster has more than one datacenter, the quorum
is calculated only with local replica nodes.

In EACH_QUORUM, every datacenter in the cluster must reach a quorum based on that datacenter's
replication factor in order for the read or write request to succeed. That is, for every datacenter in the
cluster a quorum of replica nodes must respond to the coordinator node in order for the read or write
request to succeed.

Configuring client consistency levels
You can use a cqlsh command, CONSISTENCY, to set the consistency level for queries in the current
cqlsh session. For programming client applications, set the consistency level using an appropriate driver.
For example, call QueryBuilder.insertInto with a setConsistencyLevel argument using the
Java driver.

How is the serial consistency level configured?
Serial consistency levels in Cassandra can be configured to manage lightweight transaction isolation.

Serial consistency levels in Cassandra can be configured to manage lightweight transaction isolation.
Lightweight transactions have two consistency levels defined. The serial consistency level defines the
consistency level of the serial phase, or Paxos phase, of lightweight transactions. The learn phase,
which defines what read operations will be guaranteed to complete immediately if lightweight writes are
occurring uses a normal consistency level. The serial consistency level is ignored for any query that is not
a conditional update.

/en/cql/3.3/cql/cql_reference/consistency_r.html

Database internals

48

Serial consistency levels

Table: Serial Consistency Levels

Level Description Usage

SERIAL Achieves linearizable consistency for
lightweight transactions by preventing
unconditional updates.

This consistency level is only for use with
lightweight transaction. Equivalent to
QUORUM.

LOCAL_SERIALSame as SERIAL but confined to the
datacenter. A conditional write must be
written to the commit log and memtable
on a quorum of replica nodes in the same
datacenter.

Same as SERIAL but used to
maintain consistency locally (within
the single datacenter). Equivalent to
LOCAL_QUORUM.

How are read requests accomplished?
The three types of read requests that a coordinator node can send to a replica.

There are three types of read requests that a coordinator can send to a replica:

• A direct read request
• A digest request
• A background read repair request

In a direct read request, the coordinator node contacts one replica node. Then the coordinator sends a
digest request to a number of replicas determined by the consistency level specified by the client. The
digest request checks the data in the replica node to make sure it is up to date. Then the coordinator
sends a digest request to all remaining replicas. If any replica nodes have out of date data, a background
read repair request is sent. Read repair requests ensure that the requested row is made consistent on all
replicas.

For a digest request the coordinator first contacts the replicas specified by the consistency level. The
coordinator sends these requests to the replicas that currently responds the fastest. The contacted nodes
respond with a digest of the requested data; if multiple nodes are contacted, the rows from each replica
are compared in memory for consistency. If they are not consistent, the replica having the most recent
data (based on the timestamp) is used by the coordinator to forward the result back to the client. To ensure
that all replicas have the most recent version of the data, read repair is carried out to update out-of-date
replicas.

For illustrated examples of read requests, see Examples of read consistency levels on page 49`.

Rapid read protection using speculative_retry
Rapid read protection allows Cassandra to still deliver read requests when the originally selected
replica nodes are either down or taking too long to respond. If the table has been configured with the
speculative_retry property, the coordinator node for the read request will retry the request with
another replica node if the original replica node exceeds a configurable timeout value to complete the read
request.

Figure: Recovering from replica node failure with rapid read protection

/en/glossary/doc/glossary/gloss_coordinator_node.html
/en/cql/3.3/cql/cql_reference/tabProp.html#morespeculativeRetry

Database internals

49

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1 replica node failed

coodinator node
resends after

t imeout

Chosen node

Coordinator node

Examples of read consistency levels
Read request examples with different consistency levels.

The following diagrams show examples of read requests using these consistency levels:

• QUORUM in a single datacenter
• ONE in a single datacenter
• QUORUM in two datacenters
• LOCAL_QUORUM in two datacenters
• ONE in two datacenters
• LOCAL_ONE in two datacenters

Rapid read protection diagram shows how the speculative retry table property affects consistency.

A single datacenter cluster with a consistency level of QUORUM
In a single datacenter cluster with a replication factor of 3, and a read consistency level of QUORUM, 2
of the 3 replicas for the given row must respond to fulfill the read request. If the contacted replicas have
different versions of the row, the replica with the most recent version will return the requested data. In the
background, the third replica is checked for consistency with the first two, and if needed, a read repair is
initiated for the out-of-date replicas.

Figure: Single datacenter cluster with 3 replica nodes and consistency set to QUORUM

Database internals

50

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Read response

Read repair

Chosen node

Coordinator node

A single datacenter cluster with a consistency level of ONE
In a single datacenter cluster with a replication factor of 3, and a read consistency level of ONE, the
closest replica for the given row is contacted to fulfill the read request. In the background a read repair is
potentially initiated, based on the read_repair_chance setting of the table, for the other replicas.

Figure: Single datacenter cluster with 3 replica nodes and consistency set to ONE

Database internals

51

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Read response

Read repair

Chosen node

Coordinator node

A two datacenter cluster with a consistency level of QUORUM
In a two datacenter cluster with a replication factor of 3, and a read consistency of QUORUM, 4 replicas for
the given row must respond to fulfill the read request. The 4 replicas can be from any datacenter. In the
background, the remaining replicas are checked for consistency with the first four, and if needed, a read
repair is initiated for the out-of-date replicas.

Figure: Multiple datacenter cluster with 3 replica nodes and consistency level set to QUORUM

Database internals

52

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

Database internals

53

A two datacenter cluster with a consistency level of
LOCAL_QUORUM
In a multiple datacenter cluster with a replication factor of 3, and a read consistency of LOCAL_QUORUM,
2 replicas in the same datacenter as the coordinator node for the given row must respond to fulfill the
read request. In the background, the remaining replicas are checked for consistency with the first 2, and if
needed, a read repair is initiated for the out-of-date replicas.

Figure: Multiple datacenter cluster with 3 replica nodes and consistency set to LOCAL_QUORUM

Database internals

54

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

Database internals

55

A two datacenter cluster with a consistency level of ONE
In a multiple datacenter cluster with a replication factor of 3, and a read consistency of ONE, the closest
replica for the given row, regardless of datacenter, is contacted to fulfill the read request. In the background
a read repair is potentially initiated, based on the read_repair_chance setting of the table, for the other
replicas.

Figure: Multiple datacenter cluster with 3 replica nodes and consistency set to ONE

Database internals

56

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

A two datacenter cluster with a consistency level of
LOCAL_ONE
In a multiple datacenter cluster with a replication factor of 3, and a read consistency of LOCAL_ONE, the
closest replica for the given row in the same datacenter as the coordinator node is contacted to fulfill the

Database internals

57

read request. In the background a read repair is potentially initiated, based on the read_repair_chance
setting of the table, for the other replicas.

Figure: Multiple datacenter cluster with 3 replica nodes and consistency set to LOCAL_ONE

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

Database internals

58

How are write requests accomplished?
How write requests work.

The coordinator sends a write request to all replicas that own the row being written. As long as all replica
nodes are up and available, they will get the write regardless of the consistency level specified by the
client. The write consistency level determines how many replica nodes must respond with a success
acknowledgment in order for the write to be considered successful. Success means that the data was
written to the commit log and the memtable as described in how data is written.

For example, in a single datacenter 10 node cluster with a replication factor of 3, an incoming write will
go to all 3 nodes that own the requested row. If the write consistency level specified by the client is ONE,
the first node to complete the write responds back to the coordinator, which then proxies the success
message back to the client. A consistency level of ONE means that it is possible that 2 of the 3 replicas
could miss the write if they happened to be down at the time the request was made. If a replica misses
a write, Cassandra will make the row consistent later using one of its built-in repair mechanisms: hinted
handoff, read repair, or anti-entropy node repair.

That node forwards the write to all replicas of that row. It responds to the client once it receives write
acknowledgments from the number of nodes specified by the consistency level. Exceptions:

• If the coordinator cannot write to enough replicas to meet the requested Consistency level, it throws an
Unavailable Exception and does not perform any writes.

• If there are enough replicas available but the required writes don't finish within the timeout window, the
coordinator throws a Timeout Exception.

Figure: Single datacenter cluster with 3 replica nodes and consistency set to ONE

Database internals

59

Multiple datacenter write requests
How write requests work when using multiple datacenters.

In multiple datacenter deployments, Cassandra optimizes write performance by choosing one coordinator
node. The coordinator node contacted by the client application forwards the write request to one replica in
each of the other DCs, with a special tag to forward the write to the other local replicas.

If the consistency level is LOCAL_ONE or LOCAL_QUORUM, only the nodes in the same datacenter as
the coordinator node must respond to the client request in order for the request to succeed. This way,
geographical latency does not impact client request response times.

Figure: Multiple datacenter cluster with 3 replica nodes and consistency set to QUORUM

Database internals

60

Planning a cluster deployment

61

Planning a cluster deployment
Vital information about successfully deploying a Cassandra cluster.

Planning has moved to Planning and testing cluster deployments.

Installing DataStax Distribution of Apache
Cassandra 3.x

Ways to install Cassandra.

Installing the DataStax Distribution of Apache Cassandra 3.x on
RHEL-based systems

Install using Yum repositories on RHEL, CentOS, and Oracle Linux.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra using Yum repositories on RHEL, CentOS, and Oracle Linux.

Note: To install on SUSE, use the Cassandra binary tarball distribution.

Prerequisites
• Ensure that your platform is supported.
• Yum Package Management application installed.
• Root or sudo access to the install machine.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user. The following utilities are included in a separate package: sstable2json, sstablelevelreset,
sstablemetadata, json2sstable, sstablerepairedset, sstablesplit, and token-generator.

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Add the DataStax Distribution of Apache Cassandra 3.x repository to the /etc/yum.repos.d/
datastax.repo:

[datastax-ddc]
name = DataStax Repo for Apache Cassandra
baseurl = http://rpm.datastax.com/datastax-ddc/3.version_number
enabled = 1

/en/landing_page/doc/landing_page/planning/planningAbout.html
http://cassandra.apache.org/
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

62

gpgcheck = 0

Note: Be sure to specify the version number. For example: 3.2.

3. Install the latest packages:

$ sudo yum install datastax-ddc

This command automatically installs the Cassandra utilities such as sstablelevelreset, sstablemetadata,
sstableofflinerelevel, sstablerepairedset, sstablesplit, token-generator. Each utility provides usage/help
information; type help after entering the command.

4. Optional: Single-node cluster installations only.

a) Start Cassandra:

$ sudo service cassandra start

On some Linux distributions, you many need to use:

$ sudo /etc/init.d/cassandra start

Note: Cassandra 3.8 and later: Startup is aborted if corrupted transaction log files are found and the
affected log files are logged. See the log files for information on resolving the situation.

b) Verify that DataStax Distribution of Apache Cassandra is running:

$ nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

What to do next
• Configure DataStax Community
• Initializing a multiple node cluster (single datacenter) on page 132
• Initializing a multiple node cluster (multiple datacenters) on page 135
• Recommended production settings
• Key components for configuring Cassandra
• Starting Cassandra as a service on page 138
• Package installation directories on page 72

Installing DataStax Distribution of Apache Cassandra 3.x on
Debian-based systems

Install using APT repositories on Debian and Ubuntu.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra using APT repositories on Debian and Ubuntu Linux.

Prerequisites
• Ensure that your platform is supported.

http://cassandra.apache.org/

Installing DataStax Distribution of Apache Cassandra 3.x

63

• Advanced Package Tool is installed.
• Root or sudo access to the install machine.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user. The following utilities are included in a separate package: sstable2json, sstablelevelreset,
sstablemetadata, json2sstable, sstablerepairedset, sstablesplit, and token-generator.

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Add the DataStax Distribution of Apache Cassandra 3.x repository to the /etc/apt/
sources.list.d/cassandra.sources.list

$ echo "deb http://debian.datastax.com/datastax-ddc 3.version_number main" |
 sudo tee -a /etc/apt/sources.list.d/cassandra.sources.list

Note: Be sure to specify the version number. For example: 3.2.

3. Optional: On Debian systems, to allow installation of the Oracle JVM instead of the OpenJDK JVM:

a) In /etc/apt/sources.list, find the line that describes your source repository for Debian and
add contrib non-free to the end of the line. For example:

deb http://some.debian.mirror/debian/ $distro main contrib non-free

b) Save and close the file when you are done.

4. Add the DataStax repository key to your aptitude trusted keys.

$ curl -L https://debian.datastax.com/debian/repo_key | sudo apt-key add -

5. Install the latest package:

$ sudo apt-get update
$ sudo apt-get install datastax-ddc

This command automatically installs the Cassandra utilities such as sstablelevelreset, sstablemetadata,
sstableofflinerelevel, sstablerepairedset, sstablesplit, token-generator. Each utility provides usage/help
information; type help after entering the command.

6. Optional: Single-node cluster installations only.

a) Because the Debian packages start the Cassandra service automatically, you do not need to start
the service.

Note: Cassandra 3.8 and later: Startup is aborted if corrupted transaction log files are found and the
affected log files are logged. See the log files for information on resolving the situation.

b) Verify that DataStax Distribution of Apache Cassandra is running:

$ nodetool status

Datacenter: datacenter1

http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

64

=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

7. Because the Debian packages start the Cassandra service automatically, you must stop the server and
clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

$ sudo service cassandra stop
$ sudo rm -rf /var/lib/cassandra/data/system/*

What to do next
• Configure DataStax Community
• Initializing a multiple node cluster (single datacenter) on page 132
• Initializing a multiple node cluster (multiple datacenters) on page 135
• Recommended production settings
• Key components for configuring Cassandra
• Starting Cassandra as a service on page 138
• Package installation directories on page 72

Related tasks
Starting Cassandra as a service on page 138
Start the Cassandra Java server process for packaged installations.

Related reference
Package installation directories on page 72
Configuration files directory locations.

Installing DataStax Distribution of Apache Cassandra 3.x on any
Linux-based platform

Install on all Linux-based platforms using a binary tarball.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra on all Linux-based platforms using a binary tarball.

Use this install for Mac OS X and platforms without package support, or if you do not have or want a root
installation.

Prerequisites
• Ensure that your platform is supported.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

The binary tarball runs as a stand-alone process.

http://cassandra.apache.org/
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

65

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Download the DataStax Distribution of Apache Cassandra 3.x:

$ curl -L http://downloads.datastax.com/datastax-ddc/datastax-
ddc-version_number-bin.tar.gz | tar xz

To view the available versions, see the DataStax Distribution of Apache Cassandra download page. If
you download from this page, use the following command to untar:

$ tar -xvzf datastax-ddc-version_number-bin.tar.gz

Note: Cassandra utilities, such as sstablelevelreset, sstablemetadata, sstableofflinerelevel,
sstablerepairedset, sstablesplit, and token-generator, are automatically installed. Each utility provides
usage/help information; type help after entering the command.

3. For instructions about configuring Cassandra for use without root permissions, click here.

4. To configure Cassandra, go to the install/conf directory:

$ cd datastax-ddc-version_number/conf

5. Optional: Single-node cluster installations only.

a) Start Cassandra:

$ cd install_location
$ bin/cassandra ## use -f to start Cassandra in the foreground

Note: Cassandra 3.8 and later: Startup is aborted if corrupted transaction log files are found and the
affected log files are logged. See the log files for information on resolving the situation.

b) Verify that DataStax Distribution of Apache Cassandra is running:

$ install_location
/bin/nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

What to do next
• Key components for configuring Cassandra
• Tarball installation directories on page 71
• Starting Cassandra as a stand-alone process on page 138

Configuring Cassandra without root permissions
Steps to configure Cassandra when you don't have or want to use sudo or root permissions.

Before performing this steps, you must have completed steps 1 and 2 in Installing from the binary tarball.

http://downloads.datastax.com/datastax-ddc/

Installing DataStax Distribution of Apache Cassandra 3.x

66

Procedure
1. In the install directory, create the data and log directories:

$ mkdir cassandra-data; cd cassandra-data
$ mkdir data saved_caches commitlog

2. Edit the cassandra.yaml file:

a) cd path_to_install/conf/

b) Edit these settings:

data_file_directories: path_to_install/cassandra-data/data
commitlog_directory: path_to_install/cassandra-data/commitlog
saved_caches_directory: path_to_install/cassandra-data/saved_caches

3. Go back to the tarball installation instructions.

Installing earlier releases of DataStax Distribution of Apache
Cassandra 3.x

Steps for installing the same version as other nodes in your cluster.

To install the same version as other nodes in your cluster, see:

• Installing earlier packages on RHEL-based platforms
• Installing earlier packages on Debian-based platforms
• Earlier package installs on binary tarball

Installing earlier packages on RHEL-based platforms
Follow the install instructions in Using the Yum repository and specify the version in the /etc/
yum.repos.d/datastax.repo file.

Installing earlier packages on Debian-based platforms
Follow the install instructions in Using the APT repository and specify the version_number in the install
command.

Installing using the binary tarball
Cassandra 3.2 examples:

• Using curl:

$ curl -L http://downloads.datastax.com/datastax-ddc/datastax-ddc-3.2.0-
bin.tar.gz | tar xz

• Downloading the tarball using the URL for the prior version and then extracting:

1. Download:

http://downloads.datastax.com/datastax-ddc/datastax-ddc-3.2.0-bin.tar.gz

2. Unpack the distribution. For example:

$ tar -xzvf datastax-ddc-3.2.0-bin.tar.gz

The files are extracted into the ddc-cassandra-3.2.0 directory.

Installing DataStax Distribution of Apache Cassandra 3.x

67

Uninstalling DataStax Distribution of Apache Cassandra 3.x
Steps for uninstalling Cassandra by installation type.

Select the uninstall method for your type of installation:

• Debian- and RHEL-based packages
• Binary tarball

Uninstalling Debian- and RHEL-based packages
Use this method when you have installed Cassandra using APT or Yum.

1. Stop the Cassandra service:

$ sudo service cassandra stop
2. Make sure all services are stopped:

$ ps auwx | grep cassandra
3. If services are still running, use the PID to kill the service:

$ sudo kill cassandra_pid
4. Remove the library and log directories:

$ sudo rm -r /var/lib/cassandra
$ sudo rm -r /var/log/cassandra

5. Remove the installation directories:

RHEL-based packages:

$ sudo yum remove "cassandra-*"

Debian-based packages:

$ sudo apt-get purge "cassandra-*"

Uninstalling the binary tarball
Use this method when you have installed Apache Cassandra 3.0 using the binary tarball.

1. Stop the node:

$ ps auwx | grep cassandra
$ sudo kill cassandra_pid

2. Remove the installation directory.

Installing on cloud providers
Installing Cassandra on cloud providers.

You can install Apache Cassandra on cloud providers that supply any of the supported platforms.

You can install Cassandra 2.1 and earlier versions on Amazon EC2 using the DataStax AMI (Amazon
Machine Image) as described in the AMI documentation for Cassandra 2.1.

Note: This project is currently in a maintenance mode until December 2016. During this timeframe,
DataStax will no longer provide updates for DataStax ComboAMI. After this date, DataStax will stop
hosting the central service and delete this repository. For more information, see the readme for this project.

http://cassandra.apache.org/
/en/latest-dsc-ami
https://github.com/riptano/comboami#notice-june-24-2016

Installing DataStax Distribution of Apache Cassandra 3.x

68

To install Cassandra 2.2 and later on Amazon EC2, use a trusted AMI for your platform and the
appropriate install method for that platform.

Installing the JDK
Instructions for various platforms.

Installing Oracle JDK on RHEL-based Systems
Steps for installing the Oracle JDK on RHEL-based Systems.

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

Procedure
1. Check which version of the JDK your system is using:

$ java -version

If Oracle Java is used, the results should look like:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the
installer to your local client, and then use scp (secure copy) to transfer the file to your cloud machines.

3. From the directory where you downloaded the package, run the install:

$ sudo rpm -ivh jdk-8uversion-linux-x64.rpm

The RPM installs the JDK into the /usr/java/ directory.

4. Set your system to use the Oracle JDK:

$ sudo alternatives --install /usr/bin/java java /usr/java/jdk1.8.0_version/
bin/java 200000

5. Use the alternatives command to switch to the Oracle JDK.

$ sudo alternatives --config jav

Note: If you have trouble, you may need to set JAVA_HOME and PATH in your profile, such as
.bash_profile.

The following examples assume that the JDK is in /usr/java and which java shows /usr/bin/
java:

• Shell or bash:

$ export JAVA_HOME=/usr/java/latest
$ export PATH=$JAVA_HOME/bin:$PATH

• C shell (csh):

$ setenv JAVA_HOME "/usr/java/latest"
$ setenv PATH $JAVA_HOME/bin:$PATH

/en/landing_page/doc/landing_page/planning/planningEC2.html#other-amis
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing DataStax Distribution of Apache Cassandra 3.x

69

6. Make sure your system is using the correct JDK:

$ java -version

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

Installing Oracle JDK on Debian or Ubuntu Systems
Steps for installing the Oracle JDK on Debian-based systems.

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

The Oracle Java Platform, Standard Edition (JDK) has been removed from the official software repositories
of Ubuntu and only provides a binary (.bin) version. You can get the JDK from the Java SE Downloads.

Procedure
1. Check which version of the JDK your system is using:

$ java -version

If Oracle Java is used, the results should look like:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the
installer to your local client, and then use scp (secure copy) to transfer the file to your cloud machines.

3. Make a directory for the JDK:

$ sudo mkdir -p /usr/lib/jvm

4. Unpack the tarball and install the JDK:

$ sudo tar zxvf jdk-8u65-linux-x64.tar.gz -C /usr/lib/jvm

The JDK files are installed into a directory called /usr/lib/jvm/jdk-8u_version.

5. Tell the system that there's a new Java version available:

$ sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/
jdk1.8.0_version/bin/java" 1

If updating from a previous version that was removed manually, you many need to execute the above
command twice, because you'll get an error message the first time.

6. Set the new JDK as the default using the following command:

$ sudo update-alternatives --config java

7. Make sure your system is using the correct JDK:

$ java -version

java version "1.8.0_65"

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing DataStax Distribution of Apache Cassandra 3.x

70

Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

Installing OpenJDK on RHEL-based Systems
Steps for installing OpenJDK 8 on RHEL-based Systems.

Configure your operating system to use the OpenJDK 8.

Procedure
In a terminal:

1. Install the OpenJDK 8:

$ su -c "yum install java-1.8.0-openjdk"

2. If you have more than one Java version installed on your system use the following command to switch
versions:

$ sudo alternatives --config java

3. Make sure your system is using the correct JDK:

$ java -version

openjdk version "1.8.0_71"
OpenJDK Runtime Environment (build 1.8.0_71-b15)
OpenJDK 64-Bit Server VM (build 25.71-b15, mixed mode)

Installing OpenJDK on Debian-based Systems
Steps for installing OpenJDK 8 on Debian-based systems.

Configure your operating system to use the OpenJDK 8.

Procedure
In a terminal:

1. Install the OpenJDK 8 from a PPA repository:

$ sudo add-apt-repository ppa:openjdk-r/ppa

2. Update the system package cache and install:

$ sudo apt-get update
$ sudo apt-get install openjdk-8-jdk

3. If you have more than one Java version installed on your system use the following command to switch
versions:

$ sudo update-alternatives --config java

4. Make sure your system is using the correct JDK:

$ java -version

openjdk version "1.8.0_72-internal"
OpenJDK Runtime Environment (build 1.8.0_72-internal-b05)
OpenJDK 64-Bit Server VM (build 25.72-b05, mixed mode)

http://openjdk.java.net/
http://openjdk.java.net/
https://launchpad.net/~openjdk-r/+archive/ubuntu/ppa

Installing DataStax Distribution of Apache Cassandra 3.x

71

Recommended production settings for Linux and Windows
Recommendations for production environments.

Recommendations for production environments have been moved to Recommended production settings.

Install locations
Install location topics.

Tarball installation directories
Configuration files directory locations.

The configuration files are located in the following directories:

Configuration and sample files Locations Description

cassandra.yaml install_location/
conf

Main configuration file.

cassandra-env.sh install_location/
conf

Linux settings for Java, some JVM, and
JMX.

jvm.options install_location/
conf

Static JVM settings for heap, garbage
collection, and Cassandra startup
parameters.

cassandra.in.sh install_location/
bin

Sets environment variables.

cassandra-
rackdc.properties

install_location/
conf

Defines the default datacenter and rack
used by the GossipingPropertyFileSnitch,
Ec2Snitch, Ec2MultiRegionSnitch, and
GoogleCloudSnitch.

cassandra-
topology.properties

install_location/
conf

Defines the default datacenter and rack
used by the PropertyFileSnitch.

commit_archiving.propertiesinstall_location/
conf

Configures commitlog archiving.

cqlshrc.sample install_location/
conf

Example file for using cqlsh with SSL
encryption.

metrics-reporter-config-
sample.yaml

install_location/
conf

Example file for configuring metrics in
Cassandra.

logback.xmlcat install_location/
conf

Configuration file for logback.

triggers install_location/
conf

The default location for the trigger JARs.

The binary tarball releases install into the installation directory.

Directories Description

bin Utilities and start scripts.

conf Configuration files and environment settings.

/en/landing_page/doc/landing_page/recommendedSettings.html
http://wiki.apache.org/cassandra/Metrics

Installing DataStax Distribution of Apache Cassandra 3.x

72

Directories Description

data Directory containing the files for commitlog, data, and saved_caches (unless
set in cassandra.yaml.)

interface Thrift legacy API.

javadoc Cassandra Java API documentation.

lib JAR and license files.

tools Cassandra tools and sample cassandra.yaml files for stress testing.

For DataStax Enterprise installs, see the documentation for your DataStax Enterprise version.

Package installation directories
Configuration files directory locations.

The configuration files are located in the following directories:

Configuration Files Locations Description

cassandra.yaml /etc/cassandra Main configuration file.

cassandra-env.sh /etc/cassandra Linux settings for Java, some JVM, and JMX.

jvm.options /etc/cassandra Static JVM settings for heap, garbage
collection, and Cassandra startup parameters.

cassandra.in.sh /usr/share/cassandra Sets environment variables.

cassandra-
rackdc.properties

/etc/cassandra Defines the default datacenter and rack
used by the GossipingPropertyFileSnitch,
Ec2Snitch, Ec2MultiRegionSnitch, and
GoogleCloudSnitch.

cassandra-
topology.properties

/etc/cassandra Defines the default datacenter and rack used
by the PropertyFileSnitch.

commit_archiving.properties/etc/cassandra Configures commitlog archiving.

cqlshrc.sample /etc/cassandra Example file for using cqlsh with SSL
encryption.

logback.xml /etc/cassandra Configuration file for logback.

triggers /etc/cassandra The default location for the trigger JARs.

The packaged releases install into these directories:

Directories Description

/etc/default

/etc/init.d/
cassandra

Service startup script.

/etc/security/
limits.d

Cassandra user limits.

/etc/cassandra Configuration files.

/usr/bin Binary files.

/usr/sbin

Configuration

73

Directories Description

/usr/share/
doc/cassandra/
examples

Sample yaml files for stress testing.

/usr/share/
cassandra

JAR files and environment settings (cassandra.in.sh).

/usr/share/
cassandra/lib

JAR files.

/var/lib/
cassandra

Data, commitlog, and saved_caches directories.

/var/log/
cassandra

Log directory.

/var/run/
cassandra

Runtime files.

For DataStax Enterprise installs, see the documentation for your DataStax Enterprise version.

Configuration
Configuration topics.

The cassandra.yaml configuration file
The cassandra.yaml file is the main configuration file for Cassandra.

The cassandra.yaml file is the main configuration file for Cassandra.

Important: After changing properties in the cassandra.yaml file, you must restart the node for the
changes to take effect. It is located in the following directories:

• Cassandra package installations: /etc/cassandra
• Cassandra tarball installations: install_location/conf

The configuration properties are grouped into the following sections:

• Quick start

The minimal properties needed for configuring a cluster.
• Commonly used

Properties most frequently used when configuring Cassandra.
• Performance tuning

Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/
O, CPU, reads, and writes.

• Advanced

Properties for advanced users or properties that are less commonly used.
• Security

Server and client security settings.

Note: Values with note mark default values that are defined internally, missing, or commented out, or
whose implementation depends on other properties in the cassandra.yaml file. Additionally, some

Configuration

74

commented-out values may not match the actual default values. These are recommended alternatives to
the default values.

Quick start properties
The minimal properties needed for configuring a cluster.

Related information: Initializing a multiple node cluster (single datacenter) on page 132 and Initializing a
multiple node cluster (multiple datacenters) on page 135.

cluster_name

(Default: Test Cluster) The name of the cluster. This setting prevents nodes in one logical cluster from joining
another. All nodes in a cluster must have the same value.

listen_address

(Default: localhost) The IP address or hostname that Cassandra binds to for connecting this node to other
nodes. Set this parameter or listen_interface, not both. Correct settings for various use cases:

• Single-node installations: do one of the following:

• Comment this property out. If the node is properly configured (host name, name resolution, and so
on.), Cassandra uses InetAddress.getLocalHost() to get the local address from the system.

• Leave set to the default, localhost.
• Node in a multi-node installations: set this property to the node's IP address or hostname, or set

listen_interface.
• Node in a multi-network or multi-Datacenter installation, within an EC2 environment that supports

automatic switching between public and private interfaces: set listen_address to the node's IP
address or hostname, or set listen_interface.

• Node with two physical network interfaces in a multi-datacenter installation or a Cassandra
cluster deployed across multiple Amazon EC2 regions using the Ec2MultiRegionSnitch:

1. Set listen_address to this node's private IP or hostname, or set listen_interface (for
communication within the local datacenter).

2. Set broadcast_address to the second IP or hostname (for communication between datacenters).
3. Set listen_on_broadcast_address to true.
4. If this node is a seed node, add the node's public IP address or hostname to the seeds list.

• Open the storage_port or ssl_storage_port on the public IP firewall.

Warning:

• Never set listen_address to 0.0.0.0. It is always wrong.
• Do not set values for both listen_address and listen_interface on the same node.

listen_interface

(Default: eth0)note The interface that Cassandra binds to for connecting to other Cassandra nodes. Interfaces
must correspond to a single address — IP aliasing is not supported. Do not set values for both listen_address
and listen_interface on the same node.

listen_interface_prefer_ipv6

(Default: false) If an interface has an ipv4 and an ipv6 address, Cassandra uses the first ipv4 address by
default. Set this property to true to configure Cassandra to use the first ipv6 address.

Default directories

If you have changed any of the default directories during installation, set these properties to the new
locations. Make sure you have root access.

commitlog_directory

The directory where the commit log is stored. Default locations:

Configuration

75

For optimal write performance, place the commit log be on a separate disk partition, or (ideally) a separate
physical device from the data file directories. Because the commit log is append only, an HDD is acceptable
for this purpose.

data_file_directories

The directory location where table data is stored (in SSTables). Cassandra distributes data evenly across
the location, subject to the granularity of the configured compaction strategy. Default locations:

As a production best practice, use RAID 0 and SSDs.

saved_caches_directory

The directory location where table key and row caches are stored. Default location:

• Package installations: /var/lib/cassandra/saved_caches
• Tarball installations: install_location/data/saved_caches

Commonly used properties
Properties most frequently used when configuring Cassandra.

Before starting a node for the first time, you should carefully evaluate your requirements.

Common initialization properties

Note: Be sure to set the properties in the Quick start section as well.

commit_failure_policy

(Default: stop) Policy for commit disk failures:

• die

Shut down gossip and Thrift and kill the JVM, so the node can be replaced.
• stop

Shut down gossip and Thrift, leaving the node effectively dead, available for inspection using JMX.
• stop_commit

Shut down the commit log, letting writes collect but continuing to service reads (as in pre-2.0.5
Cassandra).

• ignore

Ignore fatal errors and let the batches fail.

disk_optimization_strategy

(Default: ssd) The strategy for optimizing disk reads. Possible values: ssd or spinning.

disk_failure_policy

(Default: stop) Sets how Cassandra responds to disk failure. Recommend settings: stop or best_effort. Valid
values:

• die

Shut down gossip and Thrift and kill the JVM for any file system errors or single SSTable errors, so the
node can be replaced.

• stop_paranoid

Shut down gossip and Thrift even for single SSTable errors.
• stop

Shut down gossip and Thrift, leaving the node effectively dead, but available for inspection using JMX.
• best_effort

Stop using the failed disk and respond to requests based on the remaining available SSTables. This
allows obsolete data at consistency level of ONE.

/en/landing_page/doc/landing_page/planning/planningHardware.html

Configuration

76

• ignore

Ignore fatal errors and lets the requests fail; all file system errors are logged but otherwise ignored.
Cassandra acts as in versions prior to 1.2.

Related information: Handling Disk Failures In Cassandra 1.2 blog and Recovering from a single disk failure
using JBOD on page 156.

endpoint_snitch

(Default: org.apache.cassandra.locator.SimpleSnitch) Set to a class that implements the
IEndpointSnitch interface. Cassandra uses the snitch to locate nodes and route requests.

• SimpleSnitch

Use for single-datacenter deployment or single-zone deployment in public clouds. Does not recognize
datacenter or rack information. Treats strategy order as proximity, which can improve cache locality when
you disable read repair.

• GossipingPropertyFileSnitch

Recommended for production. Reads rack and datacenter for the local node in cassandra-
rackdc.properties file and propagates these values to other nodes via gossip. For migration from the
PropertyFileSnitch, uses the cassandra-topology.properties file if it is present.

• PropertyFileSnitch

Determines proximity by rack and datacenter, which are explicitly configured in cassandra-
topology.properties file.

• Ec2Snitch

For EC2 deployments in a single region. Loads region and availability zone information from the Amazon
EC2 API. The region is treated as the datacenter and the availability zone as the rack and uses only
private IP addresses. For this reason, it does not work across multiple regions.

• Ec2MultiRegionSnitch

Uses the public IP as the broadcast_address to allow cross-region connectivity. This means you must
also set seed addresses to the public IP and open the storage_port or ssl_storage_port on the public IP
firewall. For intra-region traffic, Cassandra switches to the private IP after establishing a connection.

• RackInferringSnitch:

Proximity is determined by rack and datacenter, which are assumed to correspond to the 3rd and 2nd
octet of each node's IP address, respectively. Best used as an example for writing a custom snitch class
(unless this happens to match your deployment conventions).

• GoogleCloudSnitch:

Use for Cassandra deployments on Google Cloud Platform across one or more regions. The region
is treated as a datacenter and the availability zones are treated as racks within the datacenter. All
communication occurs over private IP addresses within the same logical network.

• CloudstackSnitch

Use the CloudstackSnitch for Apache Cloudstack environments.

Related information: Snitches on page 20

rpc_address

(Default: localhost) The listen address for client connections (Thrift RPC service and native transport). Valid
values:

• unset:

Resolves the address using the configured hostname configuration of the node. If left unset, the
hostname resolves to the IP address of this node using /etc/hostname, /etc/hosts, or DNS.

• 0.0.0.0:

http://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2
https://cloud.google.com/
http://cloudstack.apache.org/

Configuration

77

Listens on all configured interfaces. You must set the broadcast_rpc_address to a value other than
0.0.0.0.

• IP address
• hostname

Related information: Network

rpc_interface

(Default: eth1)note The listen address for client connections. Interface must correspond to a single address,
IP aliasing is not supported. See rpc_address.

rpc_interface_prefer_ipv6

(Default: false) If an interface has an ipv4 and an ipv6 address, Cassandra uses the first ipv4 address by
default, i. If set to true, the first ipv6 address will be used.

seed_provider

The addresses of hosts designated as contact points in the cluster. A joining node contacts one of the nodes
in the -seeds list to learn the topology of the ring.

• class_name (Default: org.apache.cassandra.locator.SimpleSeedProvider)

The class within Cassandra that handles the seed logic. It can be customized, but this is typically not
required.

• - seeds (Default: 127.0.0.1)

A comma-delimited list of IP addresses used by gossip for bootstrapping new nodes joining a cluster. If
your cluster includes multiple nodes, you must change the list from the default value to the IP address
of one of the nodes.

Attention: In multiple data-center clusters, include at least one node from each datacenter (replication
group) in the seed list. Designating more than a single seed node per datacenter is recommended for fault
tolerance. Otherwise, gossip has to communicate with another datacenter when bootstrapping a node.

Making every node a seed node is not recommended because of increased maintenance and reduced
gossip performance. Gossip optimization is not critical, but it is recommended to use a small seed list
(approximately three nodes per datacenter).

Related information: Initializing a multiple node cluster (single datacenter) on page 132 and Initializing a
multiple node cluster (multiple datacenters) on page 135.

enable_user_defined_functions

(Default: false) User defined functions (UDFs) present a security risk, since they are executed on the server
side. In Cassandra 3.0 and later, UDFs are executed in a sandbox to contain the execution of malicious
code. They are disabled by default.

enable_scripted_user_defined_functions

(Default: false) Java UDFs are always enabled, if enable_user_defined_functions is true. Enable
this option to use UDFs with language javascript or any custom JSR-223 provider. This option has
no effect if enable_user_defined_functions is false.

Common compaction settings

compaction_throughput_mb_per_sec

(Default: 16) Throttles compaction to the specified Mb/second across the instance. The faster Cassandra
inserts data, the faster the system must compact in order to keep the SSTable count down. The
recommended value is 16 to 32 times the rate of write throughput (in Mb/second). Setting the value to 0
disables compaction throttling.

Related information: Configuring compaction on page 177

compaction_large_partition_warning_threshold_mb

(Default: 100) Cassandra logs a warning when compacting partitions larger than the set value.

/en/landing_page/doc/landing_page/planning/planningHardware.html#planPlanningHardware__network

Configuration

78

Common memtable settings

memtable_heap_space_in_mb

(Default: 1/4 of heap size)note

The amount of on-heap memory allocated for memtables. Cassandra uses the total of this amount and the
value of memtable_offheap_space_in_mb to set a threshold for automatic memtable flush. For details, see
memtable_cleanup_threshold.

Related information: Tuning the Java heap

memtable_offheap_space_in_mb

(Default: 1/4 of heap size)note

Sets the total amount of off-heap memory allocated for memtables. Cassandra uses the total of this amount
and the value of memtable_heap_space_in_mb to set a threshold for automatic memtable flush. For details,
see memtable_cleanup_threshold.

Related information: Tuning the Java heap

Common disk settings

concurrent_reads

(Default: 32)note Workloads with more data than can fit in memory encounter a bottleneck in fetching data
from disk during reads. Setting concurrent_reads to (16 × number_of_drives) allows operations to queue
low enough in the stack so that the OS and drives can reorder them. The default setting applies to both
logical volume managed (LVM) and RAID drives.

concurrent_writes

(Default: 32)note Writes in Cassandra are rarely I/O bound, so the ideal number of concurrent writes depends
on the number of CPU cores on the node. The recommended value is 8 × number_of_cpu_cores.

concurrent_counter_writes

(Default: 32)note Counter writes read the current values before incrementing and writing them back. The
recommended value is (16 × number_of_drives) .

concurrent_batchlog_writes

(Default: 32) Limit on the number of concurrent batchlog writes, similar to concurrent_writes.

concurrent_materialized_view_writes

(Default: 32) Limit on the number of concurrent materialized view writes. Set this to the lesser of concurrent
reads or concurrent writes, because there is a read involved in each materialized view write.

Common automatic backup settings

incremental_backups

(Default: false) Backs up data updated since the last snapshot was taken. When enabled, Cassandra creates
a hard link to each SSTable flushed or streamed locally in a backups subdirectory of the keyspace data.
Removing these links is the operator's responsibility.

Related information: Enabling incremental backups on page 154

snapshot_before_compaction

(Default: false) Enables or disables taking a snapshot before each compaction. A snapshot is useful to back
up data when there is a data format change. Be careful using this option: Cassandra does not clean up
older snapshots automatically.

Related information: Configuring compaction on page 177

Common fault detection setting

phi_convict_threshold

(Default: 8)note Adjusts the sensitivity of the failure detector on an exponential scale. Generally this setting
does not need adjusting.

Configuration

79

Related information: Failure detection and recovery on page 14

Performance tuning properties
Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/O,
CPU, reads, and writes.

Commit log settings

commitlog_sync

(Default: periodic) The method that Cassandra uses to acknowledge writes in milliseconds:

• periodic: (Default: 10000 milliseconds [10 seconds])

With commitlog_sync_period_in_ms, controls how often the commit log is synchronized to disk. Periodic
syncs are acknowledged immediately.

• batch: (Default: disabled)note

With commitlog_sync_batch_window_in_ms (Default: 2 ms), controls how long Cassandra waits for other
writes before performing a sync. When this method is enabled, Cassandra does not acknowledge writes
until they are fsynced to disk.

commitlog_segment_size_in_mb

(Default: 32MB) The size of an individual commitlog file segment. A commitlog segment may be archived,
deleted, or recycled after all its data has been flushed to SSTables. This data can potentially include
commitlog segments from every table in the system. The default size is usually suitable for most commitlog
archiving, but if you want a finer granularity, 8 or 16 MB is reasonable.

By default, the max_mutation_size_in_kb is set to half of the commitlog_segment_size_in_kb.

Related information: Commit log archive configuration on page 129

max_mutation_size_in_kb

(Default: ½ of commitlog_segment_size_in_mb.

If a mutation's size exceeds this value, the mutation is rejected. Before increasing the commitlog segment
size of the commitlog segments, investigate why the mutations are larger than expected. Look for underlying
issues with access patterns and data model, because increasing the commitlog segment size is a limited fix.

Restriction:

If you set max_mutation_size_in_kb explicitly, then you must set
commitlog_segment_size_in_mb to at least twice the size of max_mutation_size_in_kb / 1024.

For more information, see commitlog_segment_size_in_mb above.

commitlog_compression

(Default: not enabled) The compressor to use if commit log is compressed. Valid values: LZ4, Snappy or
Deflate. If no value is set for this property, the commit log is written uncompressed.

commitlog_total_space_in_mb

(Default: 32MB for 32-bit JVMs, 8192MB for 64-bit JVMs)note Total space used for commit logs. If the total
space used by all commit logs goes above this value, Cassandra rounds up to the next nearest segment
multiple and flushes memtables to disk for the oldest commitlog segments, removing those log segments
from the commit log. This reduces the amount of data to replay on start-up, and prevents infrequently-
updated tables from keeping commitlog segments indefinitely. If the commitlog_total_space_in_mb
is small, the result is more flush activity on less-active tables.

Related information: Configuring memtable thresholds on page 177

Compaction settings

Related information: Configuring compaction on page 177

Configuration

80

concurrent_compactors

(Default: Smaller of number of disks or number of cores, with a minimum of 2 and a maximum of 8 per
CPU core)noteThe number of concurrent compaction processes allowed to run simultaneously on a node,
not including validation compactions for anti-entropy repair. Simultaneous compactions help preserve read
performance in a mixed read-write workload by limiting the number of small SSTables that accumulate during
a single long-running compaction. If your data directories are backed by SSDs, increase this value to the
number of cores. If compaction running too slowly or too fast, adjust compaction_throughput_mb_per_sec
first.

Note: Increasing concurrent compactors leads to more use of available disk space for compaction, because
concurrent compactions happen in parallel, especially for STCS. Ensure that adequate disk space is
available before increasing this configuration.

sstable_preemptive_open_interval_in_mb

(Default: 50MB) The compaction process opens SSTables before they are completely written and uses
them in place of the prior SSTables for any range previously written. This setting helps to smoothly transfer
reads between the SSTables by reducing page cache churn and keeps hot rows hot.

Memtable settings

memtable_allocation_type

(Default: heap_buffers) The method Cassandra uses to allocate and manage memtable memory. See Off-
heap memtables in Cassandra 2.1. In releases 3.2.0 and 3.2.1, the only option that works is: heap-buffers
(On heap NIO (non-blocking I/O) buffers).

memtable_cleanup_threshold

(Default: 1/(memtable_flush_writers + 1))note. Ratio used for automatic memtable flush. Cassandra
adds memtable_heap_space_in_mb to memtable_offheap_space_in_mb and multiplies the total by
memtable_cleanup_threshold to get a space amount in MB. When the total amount of memory used by all
non-flushing memtables exceeds this amount, Cassandra flushes the largest memtable to disk.

For example, consider a node where the total of memtable_heap_space_in_mb and
memtable_offheap_space_in_mb is 1000, and memtable_cleanup_threshold is 0.50. The
memtable_cleanup amount is 500MB. This node has two memtables: Memtable A (150MB) and Memtable
B (350MB). When either memtable increases, the total space they use exceeds 500MB and Cassandra
flushes the Memtable B to disk.

A larger value for memtable_cleanup_threshold means larger flushes, less frequent flushes and potentially
less compaction activity, but also less concurrent flush activity, which can make it difficult to keep your disks
saturated under heavy write load.

This section documents the formula used to calculate the ratio based on the number of
memtable_flush_writers. The default value in cassandra.yaml is 0.11, which works if the node has
many disks or if you set the node's memtable_flush_writers to 8. As another example, if the node uses
a single SSD, the value for memttable_cleanup_threshold computes to 0.33, based on the minimum
memtable_flush_writers value of 2.

file_cache_size_in_mb

(Default: Smaller of 1/4 heap or 512) Total memory to use for SSTable-reading buffers.

buffer_pool_use_heap_if_exhausted

(Default: true)note Indicates whether Cassandra allocates allocate on-heap or off-heap memory when
the SSTable buffer pool is exhausted (when the buffer pool has exceeded the maximum memory
file_cache_size_in_mb), beyond this amount, Cassandra stops caching buffers, but allocates on request.

memtable_flush_writers

(Default: Smaller of number of disks or number of cores with a minimum of 2 and a maximum of 8)note The
number of memtable flush writer threads. These threads are blocked by disk I/O, and each one holds a
memtable in memory while blocked. If your data directories are backed by SSDs, increase this setting to
the number of cores.

/en/glossary/doc/glossary/gloss_compaction.html
/en/glossary/doc/glossary/gloss_anti_entropy.html
/en/glossary/doc/glossary/gloss_ssd.html
http://www.datastax.com/dev/blog/off-heap-memtables-in-Cassandra-2-1
http://www.datastax.com/dev/blog/off-heap-memtables-in-Cassandra-2-1

Configuration

81

Cache and index settings

column_index_size_in_kb

(Default: 64) Granularity of the index of rows within a partition. For huge rows, decrease this setting to
improve seek time. If you use key cache, be careful not to make this setting too large because key cache
will be overwhelmed. If you're unsure of the size of the rows, it's best to use the default setting.

index_summary_capacity_in_mb

(Default: 5% of the heap size [empty])note Fixed memory pool size in MB for SSTable index summaries. If
the memory usage of all index summaries exceeds this limit, any SSTables with low read rates shrink their
index summaries to meet this limit. This is a best-effort process. In extreme conditions, Cassandra may use
more than this amount of memory.

index_summary_resize_interval_in_minutes

(Default: 60 minutes) How frequently index summaries should be re-sampled. Re-sampling is done
periodically to redistribute memory from the fixed-size pool to SSTables proportional their recent read rates.
To disable, set to -1. This setting leaves existing index summaries at their current sampling level.

Disks settings

stream_throughput_outbound_megabits_per_sec

(Default: 200 Mbps)note Throttle for the throughput of all outbound streaming file transfers on a node.
Cassandra does mostly sequential I/O when streaming data during bootstrap or repair. This can saturate
the network connection and degrade client (RPC) performance.

inter_dc_stream_throughput_outbound_megabits_per_sec

(Default: unset)note Throttle for all streaming file transfers between datacenters, and for network stream
traffic as configured with stream_throughput_outbound_megabits_per_sec.

trickle_fsync

(Default: false) When set to true, causes fsync to force the operating system to flush the dirty buffers at
the set interval trickle_fsync_interval_in_kb. Enable this parameter to prevent sudden dirty buffer flushing
from impacting read latencies. Recommended for use with SSDs, but not with HDDs.

trickle_fsync_interval_in_kb

(Default: 10240). The size of the fsync in kilobytes.

windows_timer_interval

(Default: 1) The default Windows kernel timer and scheduling resolution is 15.6ms for power conservation.
Lowering this value on Windows can provide much tighter latency and better throughput. However, some
virtualized environments may see a negative performance impact from changing this setting below the
system default. The sysinternals clockres tool can confirm your system's default setting.

Advanced properties
Properties for advanced users or properties that are less commonly used.

Advanced initialization properties

auto_bootstrap

(Default: true) This setting has been removed from default configuration. It causes new (non-seed) nodes
migrate the right data to themselves automatically. When initializing a fresh cluster without data, add
auto_bootstrap: false.

Related information: Initializing a multiple node cluster (single datacenter) on page 132 and Initializing a
multiple node cluster (multiple datacenters) on page 135.

batch_size_warn_threshold_in_kb

(Default: 5KB per batch) Causes Cassandra to log a WARN message when any batch size exceeds this
value in kilobytes.

CAUTION: Increasing this threshold can lead to node instability.

Configuration

82

batch_size_fail_threshold_in_kb

(Default: 50KB per batch) Cassandra fails any batch whose size exceeds this setting. The default value is
10X the value of batch_size_warn_threshold_in_kb.

broadcast_address

(Default: listen_address)note The "public" IP address this node uses to broadcast to other nodes outside
the network or across regions in multiple-region EC2 deployments. If this property is commented out, the
node uses the same IP address or hostname as listen_address. A node does not need a separate
broadcast_address in a single-node or single-datacenter installation, or in an EC2-based network that
supports automatic switching between private and public communication. It is necessary to set a separate
listen_address and broadcast_address on a node with multiple physical network interfaces or other
topologies where not all nodes have access to other nodes by their private IP addresses. For specific
configurations, see the instructions for listen_address.

listen_on_broadcast_address

(Default: false) If this node uses multiple physical network interfaces, set a unique IP address for
broadcast_address and set listen_on_broadcast_address to true. This enables the node to
communicate on both interfaces.

Set this property to false if the node is on a network that automatically routes between public and private
networks, as Amazon EC2 does.

For configuration details, see the instructions for listen_address.

initial_token

(Default: disabled) Set this property for single-node-per-token architecture, in which a node owns exactly
one contiguous range in the ring space. Setting this property overrides num_tokens.

If your Cassandra installation is not using vnodes or this node's num_tokens is set it to 1 or is commented
out, you should always set an initial_token value when setting up a production cluster for the first time,
and when adding capacity. For more information, see this parameter in the Cassandra 1.1 Node and Cluster
Configuration documentation.

This parameter can be used with num_tokens (vnodes) in special cases such as Restoring from a snapshot
on page 154.

Note:

If you are using DataStax Enterprise, your node's setting for this property depends on the type of node and
type of install. For more information, see Virtual node (vnode) configuration.

num_tokens

(Default: 256) note The number of tokens randomly assigned to this node in a cluster that uses virtual nodes
(vnodes). This setting is evaluated in relation to the num_tokens set on other nodes in the cluster. If this
node's num_tokens value is higher than the values on other nodes, the vnode logic assigns this node a
larger proportion of data relative to other nodes. In general, if all nodes have equal hardware capability,
each one should have the same num_tokens value . The recommended value is 256. If this property
is commented out (#num_tokens), Cassandra uses 1 (equivalent to #num_tokens : 1) for legacy
compatibility and assigns tokens using the initial_token property.

If this cluster is not using vnodes, comment out num_tokens or set num_tokens: 1 and use initial_token.
If you already have an existing cluster with one token per node and wish to migrate to vnodes, see Enabling
virtual nodes on an existing production cluster.

Note:

If you are using DataStax Enterprise, your node's setting for this property depends on the type of node
and type of install. For more information, see Configuring DataStax Enterprise in the DataStax Enterprise
documentation.

allocate_tokens_keyspace

(Default: KEYSPACE) Enables automatic allocation of num_tokens tokens for this node. The allocation
algorithm attempts to choose tokens in a way that optimizes replicated load over the nodes in the datacenter

/en/archived/cassandra/1.1/docs/configuration/node_configuration.html#initial-token
/en/archived/cassandra/1.1/docs/configuration/node_configuration.html#initial-token
/en/latest-dse/datastax_enterprise/config/configVnodes.html
/en/datastax_enterprise/5.0/datastax_enterprise/config/configTOC.html

Configuration

83

for the replication strategy used by the specified KEYSPACE. The load assigned to each node will near
proportional to its number of vnodes.

partitioner

(Default: org.apache.cassandra.dht.Murmur3Partitioner) Sets the class that distributes rows (by
partition key) across all nodes in the cluster. Any IPartitioner may be used, including your own as long
as it is in the class path. For new clusters use the default partitioner.

Cassandra provides the following partitioners for backwards compatibility:

• RandomPartitioner

• ByteOrderedPartitioner (deprecated)
• OrderPreservingPartitioner (deprecated)

Related information: Partitioners on page 18

storage_port

(Default: 7000) The port for inter-node communication.

tracetype_query_ttl

(Default: 86400) TTL for different trace types used during logging of the query process

tracetype_repair_ttl

(Default: 604800) TTL for different trace types used during logging of the repair process.

Advanced automatic backup setting

auto_snapshot

(Default: true) Enables or disables whether Cassandra takes a snapshot of the data before truncating a
keyspace or dropping a table. To prevent data loss, Datastax strongly advises using the default setting. If
you set auto_snapshot to false, you lose data on truncation or drop.

Key caches and global row properties

When creating or modifying tables, you can enable or disable the key cache (partition key cache) or row
cache for that table by setting the caching parameter. Other row and key cache tuning and configuration
options are set at the global (node) level. Cassandra uses these settings to automatically distribute
memory for each table on the node based on the overall workload and specific table usage. You can also
configure the save periods for these caches globally.

Related information: Configuring caches

key_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the key cache to save.

key_cache_save_period

(Default: 14400 seconds [4 hours]) Duration in seconds that keys are kept in cache. Caches are saved to
saved_caches_directory. Saved caches greatly improve cold-start speeds and have relatively little effect
on I/O.

key_cache_size_in_mb

(Default: empty) A global cache setting for the maximum size of the key cache in memory (for all tables). If
no value is set, the cache is set to the smaller of 5% of the available heap, or 100MB. To disable set to 0.

Related information: setcachecapacity, Enabling and configuring caching on page 175.

column_index_cache_size_in_kb

(Default: 2) A threshold for the total size of all index entries for a partition that Cassandra stores in the partition
key cache. If the total size of all index entries for a partition exceeds this amount, Cassandra stops putting
entries for this partition into the partition key cache. This limitation prevents index entries from large partitions
from taking up all the space in the partition key cache (which is controlled by key_cache_size_in_mb).

row_cache_class_name

Configuration

84

(Default: disabled - row cache is not enabled)note The classname of the row cache provider to use. Valid
values: OHCProvider (fully off-heap) or SerializingCacheProvider (partially off-heap).

row_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the row cache to save.

row_cache_size_in_mb

(Default: 0- disabled) Maximum size of the row cache in memory. The row cache can save more time than
key_cache_size_in_mb,, but it is space-intensive because it contains the entire row. Use the row cache
only for hot rows or static rows. If you reduce the size, you may not get you hottest keys loaded on start up.

row_cache_save_period

(Default: 0- disabled) The number of seconds that rows are kept in cache. Caches are saved to
saved_caches_directory. This setting has limited use as described in row_cache_size_in_mb.

Counter caches properties

Counter cache helps to reduce counter locks' contention for hot counter cells. In case of RF = 1 a counter
cache hit causes Cassandra to skip the read before write entirely. With RF > 1 a counter cache hit still
helps to reduce the duration of the lock hold, helping with hot counter cell updates, but does not allow
skipping the read entirely. Only the local (clock, count) tuple of a counter cell is kept in memory, not the
whole counter, so it is relatively cheap.

Note: If you reduce the counter cache size, Cassandra may load the hottest keys start-up.

counter_cache_size_in_mb

(Default value: empty)note When no value is set, Cassandra uses the smaller of minimum of 2.5% of Heap
or 50MB. If your system performs counter deletes and relies on low gc_grace_seconds, you should disable
the counter cache. To disable, set to 0.

counter_cache_save_period

(Default: 7200 seconds [2 hours]) the amount of time after which Cassandra saves the counter cache (keys
only). Cassandra saves caches to saved_caches_directory.

counter_cache_keys_to_save

(Default value: disabled)note Number of keys from the counter cache to save. When this property is disabled,
Cassandra saves all keys.

Tombstone settings

When executing a scan, within or across a partition, Cassandra must keep tombstones in memory to allow
them to return to the coordinator. The coordinator uses tombstones to ensure that other replicas know
about the deleted rows. Workloads that generate numerous tombstones may cause performance problems
and exhaust the server heap. See Cassandra anti-patterns: Queues and queue-like datasets. Adjust these
thresholds only if you understand the impact and want to scan more tombstones. You can adjust these
thresholds at runtime using the StorageServiceMBean.

Related information: Cassandra anti-patterns: Queues and queue-like datasets

tombstone_warn_threshold

(Default: 1000) Cassandra issues a warning if a query scans more than this number of tombstones.

tombstone_failure_threshold

(Default: 100000) Cassandra aborts a query if it scans more than this number of tombstones.

Network timeout settings

range_request_timeout_in_ms

(Default: 10000 milliseconds) The number of milliseconds that the coordinator waits for sequential or index
scans to complete before timing it out.

read_request_timeout_in_ms

/en/cql/3.3/cql/cql_reference/tabProp.html#cql_gc_grace_sec
http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets
http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets

Configuration

85

(Default: 5000 milliseconds) The number of milliseconds that the coordinator waits for read operations to
complete before timing it out.

counter_write_request_timeout_in_ms

(Default: 5000 milliseconds) The number of milliseconds that the coordinator waits for counter writes to
complete before timing it out.

cas_contention_timeout_in_ms

(Default: 1000 milliseconds) The number of milliseconds during which the coordinator continues to retry a
CAS (compare and set) operation that contends with other proposals for the same row. If the coordinator
cannot complete the operation within this timespan, it aborts the operation.

truncate_request_timeout_in_ms

(Default: 60000 milliseconds) The number of milliseconds that the coordinator waits for a truncate (the
removal of all data from a table) to complete before timing it out. The long default value allows Cassandra
to take a snapshot before removing the data. If auto_snapshot is disabled (not recommended), you can
reduce this time.

write_request_timeout_in_ms

(Default: 2000 milliseconds) The number of milliseconds that the coordinator waits for a write operations
to complete before timing it out.

Related information: Hinted Handoff: repair during write path on page 158

request_timeout_in_ms

(Default: 10000 milliseconds) The default timeout value for other miscellaneous operations.

Related information: Hinted Handoff: repair during write path on page 158

Inter-node settings

cross_node_timeout

(Default: false) Enables or disables operation timeout information exchange between nodes (to accurately
measure request timeouts). If this property is disabled, Cassandra assumes the requests are forwarded to
the replica instantly by the coordinator, which means that under overload conditions extra time is required
for processing already-timed-out requests.

CAUTION: Before enabling this property make sure NTP (network time protocol) is installed and the times
are synchronized among the nodes.

internode_send_buff_size_in_bytes

(Default: N/A)note The sending socket buffer size in bytes for inter-node calls.

The buffer size set by this parameter and internode_recv_buff_size_in_bytes is limited by
net.core.wmem_max. If this property is not set, net.ipv4.tcp_wmem determines the buffer size. See
man tcp and:

• /proc/sys/net/core/wmem_max

• /proc/sys/net/core/rmem_max

• /proc/sys/net/ipv4/tcp_wmem

• /proc/sys/net/ipv4/tcp_wmem

Related information: TCP settings

internode_recv_buff_size_in_bytes

(Default: N/A)noteThe receiving socket buffer size in bytes for inter-node calls.

internode_compression

(Default: all) Controls whether traffic between nodes is compressed. Valid values:

• all

Compresses all traffic.

/en/landing_page/doc/landing_page/recommendedSettingsLinux.html#recommendedSettingsLinux__tcp-settings

Configuration

86

• dc

Compresses traffic between datacenters only.
• none

No compression.

inter_dc_tcp_nodelay

(Default: false) Enable this property or disable tcp_nodelay for inter-datacenter communication. If this
property is disabled, the network sends larger, but fewer, network packets. This reduces overhead from
the TCP protocol itself. However, disabling inter_dc_tcp_nodelay may increase latency by blocking
cross data-center responses.

streaming_socket_timeout_in_ms

(Default: 3600000 - 1 hour)note Enables or disables socket timeout for streaming operations. If a streaming
times out by exceeding this number of milliseconds, Cassandra retries it from the start of the current file.
Setting this value too low can result in a significant amount of data re-streaming.

Native transport (CQL Binary Protocol)

start_native_transport

(Default: true) Enables or disables the native transport server. This server uses the same address as the
rpc_address, but the port it uses is different from rpc_port. See native_transport_port.

native_transport_port

(Default: 9042) The port where the CQL native transport listens for clients.

native_transport_max_threads

(Default: 128)note The maximum number of thread handling requests. Similar to rpc_max_threads, but this
property differs as follows:

• The default for native_transport_max_threads is 128; the default for rpc_max_threads is
unlimited.

• There is no corresponding native_transport_min_threads.
• Cassandra stops idle native transport threads after 30 seconds.

native_transport_max_frame_size_in_mb

(Default: 256MB) The maximum allowed size of a frame. Frame (requests) larger than this are rejected as
invalid.

native_transport_max_concurrent_connections

(Default: -1) The maximum number of concurrent client connections. The default value of -1 means unlimited.

native_transport_max_concurrent_connections_per_ip

(Default: -1) The maximum number of concurrent client connections per source IP address. The default
value of -1 means unlimited.

RPC (remote procedure call) settings

Settings for configuring and tuning client connections.

broadcast_rpc_address

(Default: unset)note The RPC address for broadcast to drivers and other Cassandra nodes. This cannot
be set to 0.0.0.0. If left blank, Cassandra uses the rpc_address or rpc_interface. If rpc_address or
rpc_interfaceis set to 0.0.0.0, this property must be set.

rpc_port

(Default: 9160) Thrift port for client connections.

start_rpc

(Default: true) Enables or disables the Thrift RPC server.

rpc_keepalive

Configuration

87

(Default: true) Enables or disables keepalive on client connections (RPC or native).

rpc_max_threads

(Default: unlimited)note Regardless of your choice of RPC server (rpc_server_type), rpc_max_threads
dictates the maximum number of concurrent requests in the RPC thread pool. If you are using the parameter
sync (see rpc_server_type) it also dictates the number of clients that can be connected. A high number of
client connections could cause excessive memory usage for the thread stack. Connection pooling on the
client side is highly recommended. Setting a rpc_max_threads acts as a safeguard against misbehaving
clients. If the number of threads reaches the maximum, Cassandra blocks additional connections until a
client disconnects.

rpc_min_threads

(Default: 16)noteThe minimum thread pool size for remote procedure calls.

rpc_recv_buff_size_in_bytes

(Default: N/A)note The receiving socket buffer size for remote procedure calls.

rpc_send_buff_size_in_bytes

(Default: N/A)note The sending socket buffer size in bytes for remote procedure calls.

rpc_server_type

(Default: sync) Cassandra provides three options for the RPC server. On Windows, sync is about 30%
slower than hsha. On Linux, sync and hsha performance is about the same, but hsha uses less memory.

• sync: (Default: one thread per Thrift connection.)

For a very large number of clients, memory is the limiting factor. On a 64-bit JVM, 180KB is the minimum
stack size per thread and corresponds to your use of virtual memory. Physical memory may be limited
depending on use of stack space.

• hsha:

Half synchronous, half asynchronous. All Thrift clients are handled asynchronously using a small number
of threads that does not vary with the number of clients. This mechanism scales well to many clients.
The RPC requests are synchronous (one thread per active request).

Note: If you select this option, you must change the default value (unlimited) of rpc_max_threads.
• Your own RPC server

You must provide a fully-qualified class name of an o.a.c.t.TServerFactory that can create a
server instance.

Advanced fault detection settings

Settings to handle poorly performing or failing components.

gc_warn_threshold_in_ms

(Default: 1000) Any GC pause longer than this interval is logged at the WARN level. (By default, Cassandra
logs any GC pause greater than 200 ms at the INFO level.)

Additional information: Configuring logging on page 127.

dynamic_snitch_badness_threshold

(Default: 0.1) The performance threshold for dynamically routing client requests away from a poorly
performing node. Specifically, it controls how much worse a poorly performing node has to be before the
dynamic snitch prefers other replicas over it. A value of 0.2 means Cassandra continues to prefer the static
snitch values until the node response time is 20% worse than the best performing node. Until the threshold
is reached, incoming requests are statically routed to the closest replica (as determined by the snitch). A
value greater than zero for this parameter, with a value of less than 1.0 for read_repair_chance, maximizes
cache capacity across the nodes.

dynamic_snitch_reset_interval_in_ms

(Default: 600000 milliseconds) Time interval after which Cassandra resets all node scores. This allows a
bad node to recover.

/en/cql/3.3/cql/cql_reference/tabProp.html

Configuration

88

dynamic_snitch_update_interval_in_ms

(Default: 100 milliseconds) The number of milliseconds between Cassandra's calculation of node scores.
Because score calculation is CPU intensive, be careful when reducing this interval.

hints_flush_period_in_ms

(Default: 10000) The number of milliseconds Cassandra waits before flushing hints from internal buffers
to disk.

hints_directory

(Default: $CASSANDRA_HOME/data/hints) The directory in which hints are stored.

hinted_handoff_enabled

(Default: true) Enables or disables hinted handoff. To enable per datacenter, add a list of datacenters. For
example: hinted_handoff_enabled: DC1,DC2. A hint indicates that the write needs to be replayed to
an unavailable node. Cassandra writes the hint to a hints file on the coordinator node.

Related information: Hinted Handoff: repair during write path on page 158

hinted_handoff_disabled_datacenters

(Default: none) A blacklist of datacenters that will not perform hinted handoffs. To disable hinted handoff on a
certain datacenter, , add its name to this list. For example: hinted_handoff_disabled_datacenters:
- DC1 - DC2.

Related information: Hinted Handoff: repair during write path on page 158

hinted_handoff_throttle_in_kb

(Default: 1024) Maximum amount of traffic per delivery thread in kilobytes per second. This rate reduces
proportionally to the number of nodes in the cluster. For example, if there are two nodes in the cluster, each
delivery thread uses the maximum rate. If there are three, each node throttles to half of the maximum, since
the two nodes are expected to deliver hints simultaneously.

Note: When applying this limit, Cassandra computes the hint transmission rate based on the uncompressed
hint size, even if internode_compression or hints_compression is enabled.

max_hint_window_in_ms

(Default: 10800000 milliseconds [3 hours]) Maximum amount of time during which Cassandra generates
hints for an unresponsive node. After this interval, Cassandra does not generate any new hints for the node
until it is back up and responsive. If the node goes down again, Cassandra starts a new interval. This setting
can prevent a sudden demand for resources when a node is brought back online and the rest of the cluster
attempts to replay a large volume of hinted writes.

Related information: Failure detection and recovery on page 14

max_hints_delivery_threads

(Default: 2) Number of threads Cassandra uses to deliver hints. In multiple data-center deployments,
consider increasing this number because cross data-center handoff is generally slower.

max_hints_file_size_in_mb

(Default: 128) The maximum size for a single hints file, in megabytes.

hints_compression

(Default: LZ4Compressor) The compressor for hint files. Supported compressors: LZ, Snappy, and Deflate.
If you do not specify a compressor, Cassandra does not compress hints files.

batchlog_replay_throttle_in_kb

(Default: 1024KB per second) Total maximum throttle for replaying hints. Throttling is reduced proportionally
to the number of nodes in the cluster.

Request scheduler properties

Settings to handle incoming client requests according to a defined policy. If your nodes are overloaded and
dropping requests, DataStax recommends that you add more nodes rather than use these properties to
prioritize requests.

https://en.wikipedia.org/wiki/Lempel?Ziv?Welch
https://google.github.io/snappy/
https://en.wikipedia.org/wiki/DEFLATE

Configuration

89

Note: The properties in this section apply only to the Thrift transport. They have no effect on the use of
CQL over the native protocol.

request_scheduler

(Default: org.apache.cassandra.scheduler.NoScheduler) The scheduler to handle incoming client
requests according to a defined policy. This scheduler is useful for throttling client requests in single clusters
containing multiple keyspaces. This parameter is specifically for requests from the client and does not affect
inter-node communication. Valid values:

• org.apache.cassandra.scheduler.NoScheduler

Cassandra does no scheduling.
• org.apache.cassandra.scheduler.RoundRobinScheduler

Cassandra uses a round robin of client requests to a node with a separate queue for each
request_scheduler_id property.

• Cassandra uses a Java class that implements the RequestScheduler interface.

request_scheduler_id

(Default: keyspace)note The scope of the scheduler's activity. Currently the only valid value is keyspace.
See weights.

request_scheduler_options

(Default: disabled) A list of properties that define configuration options for request_scheduler:

• throttle_limit: The number of in-flight requests per client. Requests beyond this limit are queued up until
running requests complete. Recommended value is ((concurrent_reads + concurrent_writes) × 2).

• default_weight: (Default: 1)note

How many requests the scheduler handles during each turn of the RoundRobin.
• weights: (Default: Keyspace: 1)

A list of keyspaces. How many requests the scheduler handles during each turn of the RoundRobin,
based on the request_scheduler_id.

Thrift interface properties

Legacy API for older clients. CQL is a simpler and better API for Cassandra.

thrift_framed_transport_size_in_mb

(Default: 15) Frame size (maximum field length) for Thrift. The frame is the row or part of the row that the
application is inserting.

thrift_max_message_length_in_mb

(Default: 16) The maximum length of a Thrift message in megabytes, including all fields and internal Thrift
overhead (1 byte of overhead for each frame). Calculate message length in conjunction with batches. A
frame length greater than or equal to 24 accommodates a batch with four inserts, each of which is 24 bytes.
The required message length is greater than or equal to 24+24+24+24+4 (number of frames).

Security properties
Server and client security settings.

authenticator

(Default: AllowAllAuthenticator) The authentication backend. It implements IAuthenticator for
identifying users. Available authenticators:

• AllowAllAuthenticator:

Disables authentication; Cassandra performs no checks.
• PasswordAuthenticator

/en/cql/3.3/cql/cqlIntro.html

Configuration

90

Authenticates users with user names and hashed passwords stored in the
system_auth.credentials table. Leaving the default replication factor of 1 set for the system_auth
keyspace results in denial of access to the cluster if the single replica of the keyspace goes down. For
multiple datacenters, be sure to set the replication class to NetworkTopologyStrategy.

Related information: About Internal authentication on page 94

internode_authenticator

(Default: enabled)note Internode authentication backend. It implements
org.apache.cassandra.auth.AllowAllInternodeAuthenticator to allows or disallow
connections from peer nodes.

authorizer

(Default: AllowAllAuthorizer) The authorization backend. It implements IAuthenticator to limit
access and provide permissions. Available authorizers:

• AllowAllAuthorizer

Disables authorization: Cassandra allows any action to any user.
• CassandraAuthorizer

Stores permissions in system_auth.permissions table. Leaving the default replication factor of 1
set for the system_auth keyspace results in denial of access to the cluster if the single replica
of the keyspace goes down. For multiple datacenters, be sure to set the replication class to
NetworkTopologyStrategy.

Related information: Object permissions on page 99

role_manager

(Default: CassandraRoleManager) Part of the Authentication & Authorization backend that implements
IRoleManager to maintain grants and memberships between roles. Out of the box, Cassandra
provides org.apache.cassandra.auth.CassandraRoleManager, which stores role information in
the system_auth keyspace. Most functions of the IRoleManager require an authenticated login, so unless
the configured IAuthenticator actually implements authentication, most of this functionality will be
unavailable. CassandraRoleManager stores role data in the system_auth keyspace. If you use the role
manager, increase system_auth keyspace replication factor .

roles_validity_in_ms

(Default: 2000) Fetching permissions can be an expensive operation depending on the authorizer, so this
setting allows flexibility. Validity period for roles cache; set to 0 to disable. Granted roles are cached for
authenticated sessions in AuthenticatedUser and after the period specified here, become eligible for
(async) reload. Disabled automatically for AllowAllAuthenticator.

roles_update_interval_in_ms

(Default: 2000) Enable to refresh interval for roles cache. Defaults to the same value as
roles_validity_in_ms. After this interval, cache entries become eligible for refresh. Upon next
access, Cassandra schedules an async reload, and returns the old value until the reload completes. If
roles_validity_in_ms is non-zero, then this must be also.

credentials_validity_in_ms

(Default: 2000) How many milliseconds credentials in the cache remain valid. This cache is tightly coupled
to the provided PasswordAuthenticator implementation of IAuthenticator. If another IAuthenticator
implementation is configured, Cassandra does not use this cache, and these settings have no effect. Set
to 0 to disable.

Related information: Internal authentication on page 94, Internal authorization on page 99

Note: Credentials are cached in encrypted form. This may cause a performance penalty that offsets the
reduction in latency gained by caching.

credentials_update_interval_in_ms

Configuration

91

(Default: same value as credentials_validity_in_ms) After this interval, cache entries become eligible for
refresh. The next time the cache is accessed, the system schedules an asynchronous reload of the cache.
Until this cache reload is complete, the cache returns the old values.

If credentials_validity_in_ms is nonzero, this property must also be nonzero.

permissions_validity_in_ms

(Default: 2000) How many milliseconds permissions in cache remain valid. Depending on the authorizer,
such as CassandraAuthorizer, fetching permissions can be resource intensive. This setting is disabled
when set to 0 or when AllowAllAuthorizer is set.

Related information: Object permissions on page 99

permissions_update_interval_in_ms

(Default: same value as permissions_validity_in_ms)note If enabled, sets refresh interval for the permissions
cache. After this interval, cache entries become eligible for refresh. On next access, Cassandra schedules
an async reload and returns the old value until the reload completes. If permissions_validity_in_ms is
nonzero, roles_update_interval_in_ms must also be non-zero.

server_encryption_options

Enables or disables inter-node encryption. If you enable server_encryption_options, you must also generate
keys and provide the appropriate key and truststore locations and passwords. There are no custom
encryption options currently enabled for Cassandra. Available options:

• internode_encryption: (Default: none) Enables or disables encryption of inter-node communication
using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite for authentication, key exchange, and
encryption of data transfers. Use the DHE/ECDHE ciphers if running in (Federal Information Processing
Standard) FIPS 140 compliant mode. Available inter-node options:

• all

Encrypt all inter-node communications.
• none

No encryption.
• dc

Encrypt the traffic between the datacenters (server only).
• rack

Encrypt the traffic between the racks (server only).
• keystore: (Default: conf/.keystore)

The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which
is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols.
The keystore contains the private key used to encrypt outgoing messages.

• keystore_password: (Default: cassandra)

Password for the keystore.
• truststore: (Default: conf/.truststore)

Location of the truststore containing the trusted certificate for authenticating remote servers.
• truststore_password: (Default: cassandra)

Password for the truststore.

The passwords used in these options must match the passwords used when generating the keystore and
truststore. For instructions on generating these files, see Creating a Keystore to Use with JSSE.

The advanced settings:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

Configuration

92

• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)
• require_client_auth: (Default: false)

Enables or disables certificate authentication.

Related information: Node-to-node encryption on page 115

client_encryption_options

Enables or disables client-to-node encryption. You must also generate keys and provide the appropriate
key and truststore locations and passwords. There are no custom encryption options are currently enabled
for Cassandra. Available options:

• enabled: (Default: false)

To enable, set to true.
• keystore: (Default: conf/.keystore)

The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which
is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols.
The keystore contains the private key used to encrypt outgoing messages.

• keystore_password: (Default: cassandra)

Password for the keystore. This must match the password used when generating the keystore and
truststore.

• require_client_auth: (Default: false)

Enables or disables certificate authentication. (Available starting with Cassandra 1.2.3.)
• truststore: (Default: conf/.truststore)

Set this property if require_client_auth is true.
• truststore_password: truststore_password

Set if require_client_auth is true.

Advanced settings:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)
• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)

Related information: Client-to-node encryption on page 116

transparent_data_encryption_options

Enables encryption of data at rest (on-disk). Recommendation: download and install the Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files for your version of the JDK.

Cassandra supports transparent data encryption for the following file types:

• commitlog
• hints

Available options:

• enabled: (Default: false)
• chunk_length_kb: (Default: 64)
• cipher: options:

• AES
• CBC

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Configuration

93

• PKCS5Padding
• key_alias: testing:1
• iv_length: 16

Note: iv_length is commented out in the default cassandra.yaml file. Uncomment only if cipher is set
to AES. The value must be 16 (bytes).

• key_provider:

• class_name: org.apache.cassandra.security.JKSKeyProvider

parameters:

• keystore: conf/.keystore
• keystore_password: cassandra
• store_type: JCEKS
• key_password: cassandra

ssl_storage_port

(Default: 7001) The SSL port for encrypted communication. Unused unless enabled in encryption_options.

native_transport_port_ssl

(Default: 9142) In Cassandra 3.0 and later, an additional dedicated port can be designated for
encryption. If client encryption is enabled and native_transport_port_ssl is disabled, the
native_transport_port (default: 9042) will encrypt all traffic. To use both unencrypted and encrypted
traffic, enable native_transport_port_ssl

Cassandra include file
Set environment variables (cassandra.in.sh).

To set environment variables, Cassandra can use the cassandra.in.sh file, located in:

• Tarball installations: install_location/bin/cassandra.in.sh
• Package installations: /usr/share/cassandra/cassandra.in.sh

Security
Topics for securing Cassandra.

Securing Cassandra
Cassandra provides various security features to the open source community.

Cassandra provides these security features to the open source community.

• Authentication based on internally controlled rolename/passwords

Cassandra authentication is roles-based and stored internally in Cassandra system tables.
Administrators can create, alter, drop, or list roles using CQL commands, with an associated password.
Roles can be created with superuser, non-superuser, and login privileges. The internal authentication
is used to access Cassandra keyspaces and tables, and by cqlsh and DevCenter to authenticate
connections to Cassandra clusters and sstableloader to load SSTables.

• Authorization based on object permission management

Authorization grants access privileges to Cassandra cluster operations based on role authentication.
Authorization can grant permission to access the entire database or restrict a role to individual table
access. Roles can grant authorization to authorize other roles. Roles can be granted to roles. CQL
commands GRANT and REVOKE are used to manage authorization.

• Authentication and authorization based on JMX username/passwords

/en/cql/3.3/cql/cql_reference/cqlshCommandsTOC.html
/en/developer/devcenter/doc

Configuration

94

JMX (Java Management Extensions) technology provides a simple and standard way of managing
and monitoring resources related to an instance of a Java Virtual Machine (JVM). This is achieved by
instrumenting resources with Java objects known as Managed Beans (MBeans) that are registered
with an MBean server. JMX authentication stores username and associated passwords in two files,
one for passwords and one for access. JMX authentication is used by nodetool and external monitoring
tools such as jconsole.In Cassandra 3.6 and later, JMX authentication and authorization can be
accomplished using Cassandra's internal authentication and authorization capabilities.

• SSL encryption

Cassandra provides secure communication between a client and a database cluster, and between
nodes in a cluster. Enabling SSL encryption ensures that data in flight is not compromised and is
transferred securely. Client-to-node and node-to-node encryption are independently configured.
Cassandra tools (cqlsh, nodetool, DevCenter) can be configured to use SSL encryption. The DataStax
drivers can be configured to secure traffic between the driver and Cassandra.

• General security measures

Typically, production Cassandra clusters will have all non-essential firewall ports closed. Some ports
must be open in order for nodes to communicate in the cluster. These ports are detailed.

Internal authentication
Topics about internal authentication.

About Internal authentication
Internal authentication is based on Cassandra-controlled roles and passwords.

Like many databases, Cassandra uses rolenames and passwords for internal authentication. Role-based
authentication encompasses both users and roles to bring a number of useful features to authorization.
Roles can represent either actual individual users or roles that those users have in administering and
accessing the Cassandra cluster.

Figure: Roles assigned to individuals and functions

http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html

Configuration

95

For example, a user named alice is created and given login privileges:

CREATE ROLE alice WITH PASSWORD = 'enjoyLife' AND LOGIN = true;

Configuration

96

Note that the user is created as a role and this user can log into the database with the assigned password
credentials. Roles can be created with superuser, non-superuser, and login privileges. Superuser
privileges allow a role to perform any database operations. Next, we create a role that will have be given
access to all the functionality of a particular keyspace:

CREATE ROLE cycling_admin WITH PASSWORD = '1234abcd';
GRANT ALL PERMISSIONS ON KEYSPACE cycling TO cycling_admin;

This role, when assigned to a user, will provide certain privileges to the user based on the role's privileges;
the role that is granted this role will inherit the cycling_admin privileges. The cycling_admin role is
granted all permissions on the keyspace cycling in the second command. When alice is granted the role
cycling_admin, alice is now granted all permissions on the keyspace cycling:

GRANT cycling_admin TO alice;

An individual user can be granted any number of roles, just as any functional role can be granted another
role's permissions. In this example, the role cycling_analyst has the ability to select data, and then gains
the ability to select data in the another table hockey when the role hockey_analyst is granted.

CREATE ROLE cycling_analyst WITH PASSWORD = 'zyxw9876';
GRANT SELECT ON TABLE cycling.analysis TO cycling_analyst;
CREATE ROLE hockey_analyst WITH PASSWORD = 'Iget2seeAll';
GRANT SELECT ON TABLE hockey.analysis TO hockey_analyst;
GRANT hockey_analyst TO cycling_analyst;
GRANT cyclist_analyst TO jane;

If a user then is granted the role of cycling_analyst role, that user will be able to select data in the
additional table hockey The illustration above would be modified to show that the user jane now has
access to two tables.

Note: Permissions and SUPERUSER status are inherited, but the LOGIN privilege is not.

An important change that roles-based access control also introduces is that the need for SUPERUSER
privileges in order to perform user/role management operations is removed. A role can be authorized to
create roles or be authorized to grant and revoke permissions:

// Give cycling_accounts the right to create roles
GRANT CREATE ON ALL ROLES TO cycling_accounts;
// Give cycling_accounts the right to grant or revoke permissions
GRANT AUTHORIZE ON KEYSPACE cycling TO cycling_accounts;
GRANT cyclist_accounts TO jane;
GRANT cyclist_accounts TO john;

Internal authentication and authorization information is stored in the following Cassandra tables:

system_auth.roles

Table that stores the role name, whether the role can be used for login, whether the role is a superuser,
what other roles the role may be a member of, and a bcrypt salted hash password for the role.

system_auth.role_members

Table that stores the roles and role members.

system_auth.role_permissions

Table that stores the role, a resource (keyspace, table), and the permission that the role has to access the
resource.

system_auth.resource_role_permissons_index

Table that stores the role and a resource that the role has a set permission.

Cassandra is configured with a default superuser role and password pair of cassandra/cassandra by
default. Using this role, additional roles can be created using CQL commands. To secure the system, this
default role should be deleted once a non-default superuser has been created.

Configuration

97

Once roles and passwords have been set, Cassandra can be configured to use authentication in the
cassandra.yaml file.

If roles exist and Cassandra is configured to use authentication, Cassandra tools must be executed with
optional authentication options.

• cqlsh with authentication
• DevCenter authenticated connections
• DataStax drivers - produced and certified by DataStax to work with Cassandra.

Configuring authentication
Steps for configuring authentication.

Steps for configuring authentication.

Procedure
1. Change the authenticator option in the cassandra.yaml file to PasswordAuthenticator:

authenticator: PasswordAuthenticator

By default, the authenticator option is set to AllowAllAuthenticator.

2. Restart Cassandra.

3. Start cqlsh using the default superuser name and password:

$ cqlsh -u cassandra -p cassandra

4. To ensure that the keyspace is always available, increase the replication factor for the system_auth
keyspace to 3 to 5 nodes per datacenter (recommended):

cqlsh> ALTER KEYSPACE "system_auth"
WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'dc1' : 3,
 'dc2' : 2};

The system_auth keyspace uses a QUORUM consistency level when checking authentication
for the default cassandra user. For all other users created, superuser or otherwise, a LOCAL_ONE
consistency level is used for authenticating.

CAUTION: Leaving the default replication factor of 1 set for the system_auth keyspace results in denial
of access to the cluster if the single replica of the keyspace goes down. For multiple datacenters, be
sure to set the replication class to NetworkTopologyStrategy.

5. After increasing the replication factor of a keyspace, run nodetool repair to make certain the
change is propagated:

$ nodetool repair system_auth

6. Restart Cassandra.

7. Start cqlsh using the superuser name and password:

$ cqlsh -u cassandra -p cassandra

8. To prevent security breaches, replace the default superuser, cassandra, with another superuser with a
different name:

cqlsh> CREATE ROLE <new_super_user> WITH PASSWORD =
 '<some_secure_password>'
 AND SUPERUSER = true
 AND LOGIN = true;

/en/latest-devcenter/devcenter/connectionManager.html
/en/developer/driver-matrix/doc/common/driverMatrix.html
/en/glossary/doc/glossary/gloss_superuser.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Configuration

98

The default user cassandra reads with a consistency level of QUORUM by default, whereas another
superuser reads with a consistency level of LOCAL_ONE.

9. Log in as the newly created superuser:

$ cqlsh -u <new_super_user> -p <some_secure_password>

10.The cassandra superuser cannot be deleted from Cassandra. To neutralize the account, change the
password to something long and incomprehensible, and alter the user's status to NOSUPERUSER:

cqlsh> ALTER ROLE cassandra WITH
 PASSWORD='SomeNonsenseThatNoOneWillThinkOf'
 AND SUPERUSER=false;

11.Once you create some new roles, you are ready to authorize those roles to access database objects.

12.Fetching role authentication can be a costly operation. To decrease the burden, adjust the validity
period for role caching with the roles_validity_in_ms option in the cassandra.yaml file (default 2000
milliseconds):

roles_validity_in_ms: 2000

To disable, set this option to 0. This setting is automatically disabled when the authenticator is set to
AllowAllAuthenticator.

13.Configure the refresh interval for role caches by setting the roles_update_interval_in_ms option in the
cassandra.yaml file (default 2000 ms):

roles_update_interval_in_ms: 2000

If roles_validity_in_ms is non-zero, this setting must be set.

Note: The credentials are cached in their encrypted form.

The following steps apply only to Cassandra 3.4 and later:

14.Fetching credentials authentication can be a costly operation. To decrease the burden, adjust
the validity period for credential caching with the credentials_validity_in_ms option in the
cassandra.yaml file (default 2000 ms):

credentials_validity_in_ms: 2000

To disable, set this option to 0. This setting is automatically disabled when the authenticator is set to
AllowAllAuthenticator.

15.To set the refresh interval for credentials caches, use the credentials_update_interval_in_ms option
(default 2000 ms):

credentials_update_interval_in_ms: 2000

If credentials_validity_in_ms is non-zero, this setting must be set.

16.To disable configuration of authentication and authorization caches (credentials, roles, and
permissions) via JMX, uncomment the following line in the jvm.options file:

#-Dcassandra.disable_auth_caches_remote_configuration=true

After setting this option, cache options can only be set in the cassandra.yaml file. To make the new
setting take effect, restart Cassandra.

Configuration

99

Using cqlsh with authentication
How to create a cqlshrc file to default to set credentials when launching cqlsh.

Typically, after configuring authentication, logging into cqlsh requires the -u and -p options to the cqlsh
command. To set credentials for use when launching cqlsh, create or modify the .cassandra/cqlshrc
file. When present, this file passes default login information to cqlsh. The cqlshrc.sample file provides an
example.

Procedure
1. Create or modify the cqlshrc file that specifies a role name and password.

[authentication]
username = fred
password = !!bang!!$

Note: Additional settings in the cqlshrc file are described in Creating and using the cqlshrc file.

2. Save the file in home/.cassandra directory and name it cqlshrc.

3. Set permissions on the file to prevent unauthorized access, as the password is stored in plain text. The
file must be readable by the user that starts cassandra.

$ chmod 440 home/.cassandra/cqlshrc

4. Check the permissions on home/.cassandra/cqlshrc_history to ensure that plain text
passwords are not compromised.

Internal authorization
Topics about internal authorization.

Object permissions
Granting or revoking permissions to access Cassandra data.

Object permissions may be assigned using Cassandra's internal authorization mechanism for the following
objects:

• keyspace
• table
• function
• aggregate
• roles
• MBeans (in Cassandra 3.6 and later)

Authenticated roles with passwords stored in Cassandra are authorized selective access. The permissions
are stored in Cassandra tables.

Permission is configurable for CQL commands CREATE, ALTER, DROP, SELECT, MODIFY, and DESCRIBE,
which are used to interact with the database. The EXECUTE command may be used to grant permission to
a role for the SELECT, INSERT, and UPDATE commands. In addition, the AUTHORIZE command may be
used to grant permission for a role to GRANT, REVOKE or AUTHORIZE another role's permissions.

Read access to these system tables is implicitly given to every authenticated user or role because the
tables are used by most Cassandra tools:

• system_schema.keyspaces
• system_schema.columns
• system_schema.tables
• system.local
• system.peers

/en/cql/3.3/cql/cql_reference/cqlshUsingCqlshrc.html
/en/cql/3.3/cql/cql_using/useSecurePermission.html

Configuration

100

Configuring internal authorization
Steps for adding the CassandraAuthorizer.

CassandraAuthorizer is one of many possible IAuthorizer implementations. Its advantage is that it
stores permissions in the system_auth.permissions table to support all authorization-related
CQL statements. To activate it, change the authorizer option in cassandra.yaml to use the
CassandraAuthorizer.

Note: To configure authentication, see Internal authentication.

Procedure
1. In the cassandra.yaml file, comment out the default AllowAllAuthorizer and add the

CassandraAuthorizer.

authorizer: CassandraAuthorizer

You can use any authenticator except AllowAll.

2. Increase the replication factor for the system_auth keyspace if not already configured.

3. Fetching role permissions can be a costly operation. Role permissions can be cached to decrease the
burden. Adjust the validity period for permission caching by setting the permissions_validity_in_ms
option in the cassandra.yaml file. The default value is 2000 milliseconds. The caching can be
disabled by setting the option to 0. This setting is disabled automatically if the authorizer is set to
AllowAllAuthorizer

permissions_validity_in_ms: 2000

4. A refresh interval for role caches can also be configured by setting the
permissions_update_interval_in_ms option in the cassandra.yaml file. The default value is the same
value as the permissions_validity_in_ms setting. If permissions_validity_in_ms is non-
zero, this setting must be set.

permissions_update_interval_in_ms: 2000

Results
CQL supports these authorization statements:

• GRANT
• LIST PERMISSIONS
• REVOKE

JMX authentication and authorization
Topics about JMX authentication and authorization.

JMX Authentication and Authorization
JMX authentication is based on either JMX usernames and passwords or Cassandra-controlled roles and passwords.

JMX authentication and authorization allows selective users to access JMX tools and JMX metrics. In
Cassandra 3.5 and earlier, JMX is configured with password and access files. In Cassandra 3.6 and later,
JMX connections can use the same internal authentication and authorization mechanisms as CQL clients.

If usernames and passwords exist and Cassandra is configured to use authentication and authorization,
JMX tools must be executed with authentication and authorization options.

• nodetool with authentication
• jconsole with authentication

/en/cql/3.3/cql/cql_reference/grant_r.html
/en/cql/3.3/cql/cql_reference/list_permissions_r.html
/en/cql/3.3/cql/cql_reference/revoke_r.html

Configuration

101

Enabling JMX authentication and authorization
Steps to enable remote JMX connections.

By default, JMX security is disabled and accessible only from localhost without authentication as shown in
the following lines from the cassandra-env.sh file:

if ["$LOCAL_JMX" = "yes"]; then
 JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.local.port=$JMX_PORT -XX:
+DisableExplicitGC"

Configuring JMX authentication and authorization can be accomplished using local password and access
files to set the usernames, passwords and access permissions. In Cassandra 3.6 and later, Cassandra's
internal authentication and authorization can optionally be configured for JMX security.

These two methods work for remote authentication and authorization; the difference is just the location
of the configuration settings in the cassandra-env.sh file. Local configuration is placed within the if
["$LOCAL_JMX" = "yes']; then block in the file, whereas remote configuration is placed with the
else block.

Procedure
AUTHENTICATION AND AUTHORIZATION USING LOCAL FILES
• By default, JMX security is disabled and accessible only from localhost as shown in the following lines

from the cassandra-env.sh file:

if ["$LOCAL_JMX" = "yes"]; then
 JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.local.port=$JMX_PORT -XX:
+DisableExplicitGC"

• Change $LOCAL_JMX to no. Add the following lines in the remote block in the cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.authenticate=true"
 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.password.file=/etc/
cassandra/jmxremote.password"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.access.file=/etc/
cassandra/jmxremote.access"

• Create a password file and add the user and password for JMX-compliant utilities, specifying the
credentials for your environment. The default location of the password file in the cassandra-env.sh is /
etc/cassandra/jmxremote.password.

cassandra cassandra
<new_superuser> <new_superuser_password>
<some_other_user> <some_other_user_password>
controlRole someOtherHardToRememberPassword

Important: The default superuser account is a security hazard! This account is used only for the
purposes of illustration.

• The password file must be secured from unauthorized readers. Change the ownership of the
jmxremote.password file to the user who starts cassandra and change permissions to read only:

$ chown cassandra:cassandra /etc/cassandra/jmxremote.password
$ chmod 400 /etc/cassandra/jmxremote.password

This example presumes that cassandra is run by the default user cassandra.
• Create an access file and enter the following information. The default location of the access file in the

cassandra-env.sh is /etc/cassandra/jmxremote.access.

cassandra readwrite

Configuration

102

<new_superuser> readwrite
<some_other_user> readonly
controlRole readwrite \
create javax.management.monitor.,javax.management.timer. \
unregister

Important: The default superuser account is a security hazard! This account is used only for the
purposes of illustration.

The readonly permission allows the JMX client to read an MBean's attributes and receive
notifications. The readwrite permission allows the JMX client to set attributes, invoke operations, and
create and remove MBeans, in addition to reading an MBean's attributes and receives notifications.

• The access file must be secured from unauthorized readers. Change the ownership of the
jmxremote.access file to the user who starts cassandra and change permissions to read only:

$ chown cassandra:cassandra /etc/cassandra/jmxremote.access
$ chmod 400 /etc/cassandra/jmxremote.access

This example presumes that cassandra is run by the default user cassandra.
• Restart Cassandra to make the change effective.
• Check that nodetool status requires the username and password in order to execute. The

command should fail without authentication if everything is configured correctly.

$ nodetool status
• Run nodetool status with the cassandra user and password.

$ nodetool -u cassandra -pw cassandra status

AUTHENTICATION AND AUTHORIZATION WITH CASSANDRA INTERNALS - CASSANDRA 3.6 AND
LATER
• By default, JMX security is disabled and accessible only from localhost as shown in the following lines

from the cassandra-env.sh file:

if ["$LOCAL_JMX" = "yes"]; then
 JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.local.port=$JMX_PORT -XX:
+DisableExplicitGC"

• Comment out the existing line and add or uncomment the following lines in either the local or remote
block in the cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.authenticate=true"
JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.remote.login.config=CassandraLogin"'
JVM_OPTS="$JVM_OPTS -Djava.security.auth.login.config=$CASSANDRA_HOME/
conf/cassandra-jaas.config"
JVM_OPTS="$JVM_OPTS -
Dcassandra.jmx.authorizer=org.apache.cassandra.auth.jmx.AuthorizationProxy"

• And comment out the following lines in the cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.password.file=/etc/
cassandra/jmxremote.password"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.access.file=/etc/
cassandra/jmxremote.access"

• Change authentication in the cassandra.yaml file to PasswordAuthenticator.

authenticator: PasswordAuthenticator

Configuration

103

• Change authorization in the cassandra.yaml file to CassandraAuthorizer.

authorizer: CassandraAuthorizer

• Restart Cassandra to make the change effective.
• Check that nodetool status requires the username and password in order to execute. The

command should fail without authentication if everything is configured correctly.

$ nodetool -u cassandra -pw cassandra status

• Cassandra authorization can be used to grant and revoke permissions to database objects, including
MBeans.

SPECIFYING JMX AUTHENTICATION ON COMMAND LINE
• Generally, JMX settings are inserted into the cassandra-env.sh file. However, these options can be

specified at the command line:

cassandra -Dcom.sun.management.jmxremote.authenticate=true
 -Dcom.sun.management.jmxremote.password.file=/etc/cassandra/
jmxremote.password

Example
If you run nodetool status without user and password when authentication and authorization are
configured, you'll see an error similar to:

Exception in thread "main" java.lang.SecurityException: Authentication failed!
 Credentials required
at
 com.sun.jmx.remote.security.JMXPluggableAuthenticator.authenticationFailure(Unknown
 Source)
at com.sun.jmx.remote.security.JMXPluggableAuthenticator.authenticate(Unknown
 Source)
at sun.management.jmxremote.ConnectorBootstrap
$AccessFileCheckerAuthenticator.authenticate(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl.doNewClient(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl.newClient(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sun.rmi.server.UnicastServerRef.dispatch(Unknown Source)
at sun.rmi.transport.Transport$1.run(Unknown Source)
at sun.rmi.transport.Transport$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at sun.rmi.transport.Transport.serviceCall(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport.handleMessages(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run0(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer(Unknown
 Source)
at sun.rmi.transport.StreamRemoteCall.executeCall(Unknown Source)
at sun.rmi.server.UnicastRef.invoke(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl_Stub.newClient(Unknown Source)
at javax.management.remote.rmi.RMIConnector.getConnection(Unknown Source)
at javax.management.remote.rmi.RMIConnector.connect(Unknown Source)
at javax.management.remote.JMXConnectorFactory.connect(Unknown Source)
at org.apache.cassandra.tools.NodeProbe.connect(NodeProbe.java:146)
at org.apache.cassandra.tools.NodeProbe.<init>(NodeProbe.java:116)

Configuration

104

at org.apache.cassandra.tools.NodeCmd.main(NodeCmd.java:1099)

Using nodetool with authentication
How to use nodetool with authentication.

After configuring JMX authentication, using nodetool requires the -u and -p options to the nodetool
commands.

Procedure
Run nodetool using a pre-configured JMX username and password for <username> and
<password>:

$ nodetool -u <username> -pw <password>

For Cassandra 3.6 and later, the username and password can be an internally configured Cassandra
role and password.

Note: In Cassandra 3.0.8 and later, a user designated readonly access can run nodetool info so
that cluster monitoring is available. In earlier versions, the user must have readwrite permission.

Using jconsole with authentication
How to use jconsole with authentication.

After configuring JMX authentication, using jconsole requires a username and password to complete the
remote connection to the Cassandra cluster. Use an appropriate username/password combination.

Procedure
Start jconsole using a pre-configured JMX username and password for <username> and
<password>:

Configuration

105

For Cassandra 3.6 and later, the username and password can be an internally configured Cassandra
role and password.

SSL encryption
Topics for using SSL in Cassandra.

Encrypting Cassandra with SSL
Cassandra can encrypt both internode and client-to-server communications using SSL.

The Secure Socket Layer (SSL) is a cryptographic protocol used to secure communications between
computers. For reference, see SSL in wikipedia. Data is encrypted during communication to prevent
accidental or deliberate attempts to read the data.

Briefly, SSL works in the following manner. Two entities, either software or hardware, that are
communicating with one another. The entities an be a client and node or peers in a cluster. These entities
must exchange information to set up trust between them. Each entity that will provide such information
must have a generated key that consists of a private key that only the entity stores and a public key that
can be exchanged with other entities. If the client wants to connect to the server, the client requests the
secure connection and the server sends a certificate that includes its public key. The client checks the
validity of the certificate by exchanging information with the server, which the server validates with its
private key. If a two-way validation is desired, this process must be carried out in both directions. Private
keys and certificates are stored in the keystore and public keys are stored in the truststore. For systems

https://en.wikipedia.org/wiki/Transport_Layer_Security

Configuration

106

using a Certificate Authority (CA), the truststore can store certificates signed by the CA for verification.
Both keystores and truststores have passwords assigned, referred to as the keypass and storepass.

Apache Cassandra provides these SSL encryption features for .

• Node-to-node encrypted communication

Node-to-node, or internode, encryption is used to secure data passed between nodes in a cluster.
• Client-to-node encrypted communication

Client-to-node encryption is used to secure data passed between a client program, such as cqlsh,
DevCenter, or nodetool, and the nodes in the cluster.

Installing Java Cryptography Extension (JCE) Files
Installing the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files.

Installing the JCE Unlimited Strength Jurisdiction Policy Files can ensure support for all encryption
algorithms when using Oracle Java with SSL on Apache Cassandra, and it highly recommended. The files
must be installed on every node in the Cassandra cluster.

Some of the cipher suites in the default cassandra.yaml are included only in the Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files. To ensure support for all encryption
algorithms, install the JCE Unlimited Strength Jurisdiction Policy Files.

Install the JCE files using the appropriate method for your Cassandra installation:

Procedure
Installing the JCE on RHEL-based systems
• Install the EPEL repository:

$ sudo yum install epel-release

Installing the JCE on Debian-based systems
• Install JCE using webupd8 PPA repository:

$ sudo apt-get install oracle-java8-unlimited-jce-policy

Installing the JCE using the Oracle jar files
• Download the Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files from Oracle

Java SE download page.
• Unzip the downloaded file.
• Copy local_policy.jar and US_export_policy.jar to the $JAVA_HOME/jre/lib/security

directory to overwrite the existing jar files.

Preparing server certificates for development
Steps to generate SSL certificates for client-to-node encryption or node-to-node encryption in a development environment.

To use SSL encryption for client-to-node encryption or node-to-node encryption, SSL certificates must
be generated using keytool. If you generate the certificates for one type of encryption, you do not need
to generate them again for the other; the same certificates are used for both. All nodes must have all
the relevant SSL certificates on all nodes. A keystore contains private keys. The truststore contains
SSL certificates for each node. The certificates in the truststore don't require signing by a trusted and
recognized public certification authority.

Procedure
• Generate a private and public key pair on each node of the cluster. Use an alias that identifies the

node. Prompts for the keystore password, dname (first and last name, organizational unit, organization,

/en/developer/devcenter/doc/devcenter/connecingClusterSsl.html
http://www.webupd8.org/2014/03/how-to-install-oracle-java-8-in-debian.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html

Configuration

107

city, state, country), and key password. The dname should be generated with the CN value as the IP
address or FQDN for the node.

$ keytool -genkey -keyalg RSA -alias node0 -validity 36500 -keystore
 keystore.node0

Note: In this example, the value for --validity gives this key pair a validity period of 100 years. The
default validity value for a key pair is 90 days.

• The generation command can also include all prompted-for information in the command line. This
example uses an alias of node0, a keystore name of keystore.node0, uses the same password of
cassandra for both the keystore and the key, and a dname that identifies the IP address of node0 as
172.31.10.22.

$ keytool -genkey -keyalg RSA -alias node0 -keystore keystore.node0 -
storepass cassandra -keypass cassandra -dname "CN=172.31.10.22, OU=None,
 O=None, L=None, C=None"

• Export the public part of the certificate to a separate file.

$ keytool -export -alias cassandra -file node0.cer -keystore .keystore
• Add the node0.cer certificate to the node0 truststore of the node using the keytool -import

command.

$ keytool -import -v -trustcacerts -alias node0 -file node0.cer -keystore
 truststore.node0

• cqlsh does not work with the certificate in the format generated. openssl is used to generate a
PEM file of the certificate with no keys, node0.cer.pem, and a PEM file of the key with no certificate,
node0.key.pem. First, the keystore is imported in PKCS12 format to a destination keystore,
node0.p12, in the example. This is followed by the two commands that extract the two PEM files.

$ keytool -importkeystore -srckeystore keystore.node0 -destkeystore
 node0.p12 -deststoretype PKCS12 -srcstorepass cassandra -deststorepass
 cassandra
openssl pkcs12 -in node0.p12 -nokeys -out node0.cer.pem -passin
 pass:cassandra
openssl pkcs12 -in node0.p12 -nodes -nocerts -out node0.key.pem -passin
 pass:cassandra

• For client-to-remote-node encryption or node-to-node encryption, use a copying tool such as scp to
copy the node0.cer file to each node. Import the file into the truststore after copying to each node.
The example imports the certificate for node0 into the truststore for node1.

$ keytool -import -v -trustcacerts -alias node0 -file node0.cer -keystore
 truststore.node1

• Make sure keystore file is readable only to the Cassandra daemon and not by any user of the system.
• Check that the certificates exist in the keystore and truststore files using keytool -list. The

example shows checking for the node1 certificate in the keystore file and for the node0 and node1
certificates in the truststore file.

$ keytool -list -keystore keystore.node1
keytool -list -keystore truststore.node1

• Import the user's certificate into every node's truststore using keytool:

$ keytool -import -v -trustcacerts -alias <username> -file <certificate
 file> -keystore .truststore

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html

Configuration

108

Preparing SSL certificates for production
Steps to generate SSL certificates for client-to-node encryption or node-to-node encryption using a self-signed Certificate Authority (CA) in a production environment.

To use SSL encryption for client-to-node encryption or node-to-node encryption, SSL certificates must
be generated using openssl and keytool. To validate the certificates, a self-signed Certificate Authority
(CA) can be generated for production use with Apache Cassandra. The certificates generated using these
instructions can be used for both internode and client-to-node encryption. For internode encryption, all
nodes must have the truststore that provides the chain of trust for the CA. The certificates in the truststore
can either be signed by the self-signed certificate authority used here or by a trusted and recognized public
certificate authority.

Procedure
Create a root CA certificate and key

1. Create the root CA certificate and key using openssl req. This command uses a certificate
configuration file gen_rootCa_cert.conf.

$ openssl req
 -config gen_rootCa_cert.conf
 -new -x509 -nodes
 -subj /CN=rootCa/OU=TestCluster/O=YourCompany/C=US/
 -keyout rootCa.key
 -out rootCa.crt
 -days 365

gen_rootCa_cert.conf
[req]
distinguished_name = req_distinguished_name
prompt = no
output_password = myPass
default_bits = 2048

[req_distinguished_name]
C = US
O = YourCompany
OU = TestCluster
CN = rootCa

Option Description

-config Configuration file to use

-new Generate new certificate

-x509 Outputs a self-signed certificate

-nodes If a private key is created, it is not encrypted

-subj Sets subject name when processing

-keyout Specify the private key filename to write

-out Specify the certificate filename to write

-days Specify the number of days for which to certify the
certificate

The resulting files are the rootCA certificate and the rootCa private key.

https://www.openssl.org
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html

Configuration

109

An example of the rootCa.crt file:

-----BEGIN CERTIFICATE-----
MIIDADCCAegCCQCWl1PhaMCqNDANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJV
UzEMMAoGA1UEChMDTExQMRQwEgYDVQQLEwtUZXN0Q2x1c3RlcjEPMA0GA1UEAxMG
cm9vdENhMB4XDTE2MDkxMDAzNTkzOFoXDTE3MDkxMDAzNTkzOFowQjELMAkGA1UE
BhMCVVMxDDAKBgNVBAoTA0xMUDEUMBIGA1UECxMLVGVzdENsdXN0ZXIxDzANBgNV
BAMTBnJvb3RDYTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANmFeE58
eafNDPOYr6yFGNHxnwtiKRIs1CXF8pJQ1smgzM2v6D9UeixdZ5bDs0grK14a4UoE
939ZCWKOLcgFi3394XwXHCf0mSjudrHd0ptAQKVSMqILRiJ5nJaR4yqfZBFbB2fl
iQ5r9z2P20zTjlbbXZoJT83KF4Q+ke+VLLmEgSsLowjmq+JPP4Uzlp8dCyVLpAeD
snf/T7/RaeIuZ+Wzje5pMlerY7Cv9A6te/SkFK1bZYzMsTCFOY6RBk1KdcVyDvhi
co1b8Hv5hQLZ4v3nd6RtfmXNdL7YrqnLA9LnmS9ZFIk1w95Plg6hdBOuGT62W3ll
IypMbZBOdWBMp0MCAwEAATANBgkqhkiG9w0BAQsFAAOCAQEAmoh6xkoa71yuVxJO
O24wDfSNIpgAiP1uj7tvgza0yPs221o8p2e/34wdRaWdzLnc3Iu8cLpommuq9b82
/WQNxdqFIJyyJwDTZUZ6VisSSXktDsW3mDPy10As+HJHuQ9adTsi/sOerh85FjmT
BYbTDjX6BsIrwywgFBnb6uud2/GKlzTtlsi5LFLWKHVryxqng+ja4CZZbQ6/GT02
hdP2d/17gGgCi1hIg5KJv/MoVhN0dLb6cueqfxLOOLGkqkXev2NiONzpjQITRwoF
1NUo45DRHi25PAJ8+slUzvii4ADbe3P+SfEI6AETdnadCnA+WOffHI35OqxxePO9
VqWu8w==
-----END CERTIFICATE-----

An example of the rootCa.key file:

-----BEGIN PRIVATE KEY-----
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDZhXhOfHmnzQzz
mK+shRjR8Z8LYikSLNQlxfKSUNbJoMzNr+g/VHosXWeWw7NIKyteGuFKBPd/WQli
ji3IBYt9/eF8Fxwn9Jko7nax3dKbQEClUjKiC0YieZyWkeMqn2QRWwdn5YkOa/c9
j9tM045W212aCU/NyheEPpHvlSy5hIErC6MI5qviTz+FM5afHQslS6QHg7J3/0+/
0WniLmfls43uaTJXq2Owr/QOrXv0pBStW2WMzLEwhTmOkQZNSnXFcg74YnKNW/B7
+YUC2eL953ekbX5lzXS+2K6pywPS55kvWRSJNcPeT5YOoXQTrhk+tlt5ZSMqTG2Q
TnVgTKdDAgMBAAECggEAYsdSn8m08TeTtxdSR3TVlZk00VWNMxy6ZkDi7ADb2Qo1
lv5X6FJzfKwZ+4P5aT95XS21uwhQYDtNoLzSG3AxLVDaUaCo/5f66XSI4DLMjgX6
lVijd6TI/6TcMCAl2dgx+BOvZEX/HFZ5GzK1ssirbdQGSIoL/HbWgQ5s9TB38/Ja
205ZB1lMUVsqdmY2M6vwY0xgr/xKXMgA3KvsW5PFBX1bgh8T6OLuIXTERYezGU4c
c71JJt+1ejHSDInEEIV1peJer6qXopHDMQOcOSTzcZkGgDlFB7DHyGZM1ZsDRDOO
f7Kq02A2c6CwJQeyGyRVIxDO6Ef73zw6UEtWzYCHeQKBgQDw9i8y0nlLgBLZaWor
bJzJN9ML7CfOVw/RuGD2Y0z7su8SWQLLecVW1lwcaec80rD7e/SBr9Q/Kz68va13
sVBx43QEDNp63g36bX917gu/hwBQs6RJlHGJmiNa/p5S01MaMM2YrX35gxBCQJHN
hiE0yBzepfdGDELrEtOcttfCFwKBgQDnGMhpCpBEvYX43l9PQmnJ+P2w3lZoo8RF
YUdpUuyH9n/mbopU3zu5f1roJefiEaxOozuL1sUOCsCN8qK2B3YCcX0LUvLrpAqR
UD+So+eAF9tgFKHDvPLO7YA3iGPUl00cnwl2UXxV+7SONJRZsCbhbGO+T6QWq6YT
eohMfvgbtQKBgFHPlAjSUyJiMoQkeUqTDsx2qq4SmRVCk/lle25MGrgecXMuS3eg
OXMZRp7TChKpijNoS4S4mPx1h1B3qezIhAKW8i3p20f6Go7bHHqCvvRhNqcvxujA
gKfycGyVpFWEsGNlDHj49pt/d0a3O4mnL6EHDF4/xSvAP/wmITjFD44zAoGBALbB
jpwjUnxKNUze7xjLOMYVNutMqaEPAgSsLcFJZu0PL46YFKWR9LV51faJI5xQxada
x5iLPEMilaysGalCtTyxa2YtLxbTH9hTUjMxk75lH4QYTOVy48JpaGCCaBCTptPf
oagEQQPujpd3VWqoN9dF1IuIiAe1rxzwZiG4t5WRAoGBAKdypl5nZgtghlUxoazS
CXfQsIT7g4y0LvoL9+EqdPk98Wl2Cb6MD1M89UqFhoyh65xE73EssGqDyypgYFGE
HS/sMt9PP44ftfWRgQEGje6tJdKXLyUHSF+kKg4mormriOSm54sZD7Qk5RxEVcMq
arKAClJVFkL9ARoAxRQWwidv
-----END PRIVATE KEY-----

Verify the rootCa certificate

2. Verify the rootCa certificate.

$ openssl x509
 -in rootCa.crt
 -text
 -noout

Configuration

110

Option Description

-in Specify the certificate filename to verify

-text Print out the certificate in text form including
the public key, signature algorithms, issuer and
subject names, serial number any extensions
present and any trust settings

-noout Prevents output of the encoded version of the
request

This command prints output to the console that is similar to this example:

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 10851234054762703412 (0x969753e168c0aa34)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=YourCompany, OU=TestCluster, CN=rootCa
 Validity
 Not Before: Sep 10 03:59:38 2016 GMT
 Not After : Sep 10 03:59:38 2017 GMT
 Subject: C=US, O=YourCompany, OU=TestCluster, CN=rootCa
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:d9:85:78:4e:7c:79:a7:cd:0c:f3:98:af:ac:85:
 18:d1:f1:9f:0b:62:29:12:2c:d4:25:c5:f2:92:50:
 d6:c9:a0:cc:cd:af:e8:3f:54:7a:2c:5d:67:96:c3:
 b3:48:2b:2b:5e:1a:e1:4a:04:f7:7f:59:09:62:8e:
 2d:c8:05:8b:7d:fd:e1:7c:17:1c:27:f4:99:28:ee:
 76:b1:dd:d2:9b:40:40:a5:52:32:a2:0b:46:22:79:
 9c:96:91:e3:2a:9f:64:11:5b:07:67:e5:89:0e:6b:
 f7:3d:8f:db:4c:d3:8e:56:db:5d:9a:09:4f:cd:ca:
 17:84:3e:91:ef:95:2c:b9:84:81:2b:0b:a3:08:e6:
 ab:e2:4f:3f:85:33:96:9f:1d:0b:25:4b:a4:07:83:
 b2:77:ff:4f:bf:d1:69:e2:2e:67:e5:b3:8d:ee:69:
 32:57:ab:63:b0:af:f4:0e:ad:7b:f4:a4:14:ad:5b:
 65:8c:cc:b1:30:85:39:8e:91:06:4d:4a:75:c5:72:
 0e:f8:62:72:8d:5b:f0:7b:f9:85:02:d9:e2:fd:e7:
 77:a4:6d:7e:65:cd:74:be:d8:ae:a9:cb:03:d2:e7:
 99:2f:59:14:89:35:c3:de:4f:96:0e:a1:74:13:ae:
 19:3e:b6:5b:79:65:23:2a:4c:6d:90:4e:75:60:4c:
 a7:43
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 9a:88:7a:c6:4a:1a:ef:5c:ae:57:12:4e:3b:6e:30:0d:f4:8d:
 22:98:00:88:fd:6e:8f:bb:6f:83:36:b4:c8:fb:36:db:5a:3c:
 a7:67:bf:df:8c:1d:45:a5:9d:cc:b9:dc:dc:8b:bc:70:ba:68:
 9a:6b:aa:f5:bf:36:fd:64:0d:c5:da:85:20:9c:b2:27:00:d3:
 65:46:7a:56:2b:12:49:79:2d:0e:c5:b7:98:33:f2:d7:40:2c:
 f8:72:47:b9:0f:5a:75:3b:22:fe:c3:9e:ae:1f:39:16:39:93:
 05:86:d3:0e:35:fa:06:c2:2b:c3:2c:20:14:19:db:ea:eb:9d:
 db:f1:8a:97:34:ed:96:c8:b9:2c:52:d6:28:75:6b:cb:1a:a7:
 83:e8:da:e0:26:59:6d:0e:bf:19:3d:36:85:d3:f6:77:fd:7b:
 80:68:02:8b:58:48:83:92:89:bf:f3:28:56:13:74:74:b6:fa:
 72:e7:aa:7f:12:ce:38:b1:a4:aa:45:de:bf:63:62:38:dc:e9:
 8d:02:13:47:0a:05:d4:d5:28:e3:90:d1:1e:2d:b9:3c:02:7c:
 fa:c9:54:ce:f8:a2:e0:00:db:7b:73:fe:49:f1:08:e8:01:13:
 76:76:9d:0a:70:3e:58:e7:df:1c:8d:f9:3a:ac:71:78:f3:bd:

Configuration

111

 56:a5:ae:f3

Generate public/private key pair and keystore for each node

3. Repeat this command for each node. The files can be generated on a single node and distributed out to
the nodes after the entire process is completed.

keytool -genkeypair
 -keyalg RSA
 -alias 10.200.175.15
 -keystore 10.200.175.15.jks
 -storepass myKeyPass
 -keypass myKeyPass
 -validity 365
 -keysize 2048
 -dname "CN=10.200.175.15, OU=TestCluster, O=YourCompany, C=US"

Option Description

-genkeypair Command to generate a public/private key pair

-keyalg Specify the key algorithm

-alias Assign an unique alias by which keystore entry is
accessed

-keystore Specify the keystore filename

-storepass Specify the keystore password

-keypass Specify the private key password

-validity Specify the number of days for the keystore
certificate validity

-keysize Specify the size of the generated key

-dname Specify the X.500 Distinguished Name to be
associated with the value of alias

In this example, the node IP address is 10.200.175.15 and the keystore filename incorporates that
IP address with a suffix of jks (Java KeyStore). While the keystore can be named with any convention,
the examples here use the IP address in order to map the files to the nodes. The dname sets the CN
value to the node's IP address or FQDN as well. The storepass and keypass must be the same
value.

Check certificates

4. The certificates can be checked once generated:

keytool -list
 -keystore 10.200.175.15.jks
 -storepass myKeyPass

An example keystore file:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

10.200.175.15, Sep 10, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1):
 D6:1B:6C:FE:E3:3B:4B:3D:E0:F0:38:EA:54:AD:F0:E7:1E:D4:CB:4D

Configuration

112

Export certificate signing request (CSR) for each node

5. Once the node certificate and key are generated, a certificate signing request (CSR) is exported. The
CSR will be signed with the rootCa certificate to verify that the node's certificate is trusted.

keytool -certreq
 -keystore 10.200.175.15.jks
 -alias 10.200.175.15
 -file 10.200.175.15.csr
 -keypass myKeyPass
 -storepass myKeyPass
 -dname "CN=10.200.175.15, OU=TestCluster, O=YourCompany, C=US"

Option Description

-certreq Command to export a CSR

-file Specify the CSR filename

-alias Assign an unique alias by which keystore entry is
accessed

-keystore Specify the keystore filename

-storepass Specify the keystore password

-keypass Specify the private key password

-dname Specify the X.500 Distinguished Name to be
associated with the value of alias

An example CSR file:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICvDCCAaQCAQAwRzELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA0xMUDESMBAGA1UECxMJTExQMDkw
NzE2MRYwFAYDVQQDEw0xMC4yMDAuMTc1LjE1MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC
AQEAhUJWFQ+9Xgs8KfhLYCBi8i0csY44YkCBFAz3jh6g80wdCqYetYcNxWi
+3rgAFL6BAibt23xG
qBKtNszxyUu8M7ocfw+dVeT4YQJWE0TNAnwlijx
+jyl2IKCFtuON3NmGvvHviPDyNyz2VuB7jlA3
fGuCSsXEzpDXdStKZNcozeIxnmLRv2VKkp8edOX0Bi3QOxwKgwzZQ0/
Z7yWaixl1WB2YKzY9s1Bn
oEoRHdFeQZR7f9QuQYBwIKsCx3cFsiEQJnpKqbZYLFrPmpMrR7ynLx6MGZVDuLfrXp/
yFyuHmamI
M80CGvKljwr/
onalDY2F5AeSdUyBM3vVTWrC9n9jwQIDAQABoDAwLgYJKoZIhvcNAQkOMSEwHzAd
BgNVHQ4EFgQUSbrkacD4XXCIaJQtX+7/
en3Z8r8wDQYJKoZIhvcNAQELBQADggEBAAxU2FbQxy21
EHcnfC4YETDQvXuwv4qQzcT61faZEjmznZ9ekm8ckzV5NlHpyArk12EO13twh94U56ZItKfiYOKW
tP5wUGcoYhdyQnG0p6wunVRJAMidoZMAkjJ6bXwDwgNqnlKL48iGD8ZnguVUM353KwTDm1mvJ4yE
ssEcnBKd4lDzfZN+yx3pmyCr/
MjMCODLF7VVMRH5FpQZ0+uGAIq0fx8FeEugxGie4tkzqP3xkkUB
RDKkfrUC8Z61gL3K1LpLZ77a1okpP3cNkvSStVgbhLH9qwnhCORNGHy+NyZLm1a
+hS4QCAJzRKlC
nsdwUTp+HXUtyNLd7GJHGLPu0YY=
-----END NEW CERTIFICATE REQUEST-----

Sign node certificate with rootCa for each node

6. The CSR is input, signed with the rootCa certificate and a signed node certificate is created.

openssl x509
 -req
 -CA rootCa.crt
 -CAkey rootCa.key

Configuration

113

 -in 10.200.175.15.csr
 -out 10.200.175.15.crt_signed
 -days 365
 -CAcreateserial
 -passin pass:myPass

Option Description

-req Specify that the input file is a CSR

-CA Identify the rootCa certificate

-CAkey Identify the rootCa key

-in Specify the input filename from which to read a
certificate

-out Specify the output filename for the signed
certificate

-CAcreateserial Specify that a CA serial number file is created if it
does not exist

-days Specify the number of days for which to certify the
certificate

-passin Specify the key password source

An example of the signed certificate:

-----BEGIN CERTIFICATE-----
MIIDBTCCAe0CCQDBKbNGSE8C9DANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJV
UzEMMAoGA1UEChMDTExQMRQwEgYDVQQLEwtUZXN0Q2x1c3RlcjEPMA0GA1UEAxMG
cm9vdENhMB4XDTE2MDkxMDA0MDAzMFoXDTE3MDkxMDA0MDAzMFowRzELMAkGA1UE
BhMCVVMxDDAKBgNVBAoTA0xMUDESMBAGA1UECxMJTExQMDkwNzE2MRYwFAYDVQQD
Ew0xMC4yMDAuMTc1LjE1MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA
hUJWFQ+9Xgs8KfhLYCBi8i0csY44YkCBFAz3jh6g80wdCqYetYcNxWi+3rgAFL6B
Aibt23xGqBKtNszxyUu8M7ocfw+dVeT4YQJWE0TNAnwlijx+jyl2IKCFtuON3NmG
vvHviPDyNyz2VuB7jlA3fGuCSsXEzpDXdStKZNcozeIxnmLRv2VKkp8edOX0Bi3Q
OxwKgwzZQ0/Z7yWaixl1WB2YKzY9s1BnoEoRHdFeQZR7f9QuQYBwIKsCx3cFsiEQ
JnpKqbZYLFrPmpMrR7ynLx6MGZVDuLfrXp/yFyuHmamIM80CGvKljwr/onalDY2F
5AeSdUyBM3vVTWrC9n9jwQIDAQABMA0GCSqGSIb3DQEBCwUAA4IBAQCqqXSKsKlW
sivk9/ap57fVbvYWj34FCmCYEWAPTrj0gEDwEP2WU2/813FF3fiXeFGwuNcm3XHl
0jsPsrckVmtko2ERGHCsQS7RlRlbRRzinQZ6zQaHFyDqsVBGeb/FRE0eJPO2OWQA
hksT1y7DAMv0kFyzvHDGtJRzWgXMpjc5LrWto46+JByx+9JjVI5a9DuKdvuoJGL/
CShFW/AWyOBk8LFlx+qzcYBy1R6WYqqE+pIhsq8X9Jtb6/ZymZBw7Ek9XH8ULNjV
S8QfiEkEXMjH+s+7Pofky7/8/udrEemQgLcIY3xKnlp+Rsz/wH21ZdKGs/lhbIzm
Xo+7pYd2dqHT
-----END CERTIFICATE-----

Verify the signed certificate for each node

7. Check the signed certificate by designating the rootCa certificate and the signed certificate to verify:

openssl verify -CAfile rootCa.crt 10.200.175.15.crt_signed

If the verification succeeds, a console message is returned:

10.200.175.15.crt_signed: OK

Import rootCa certificate to each node keystore

8. Use keytool -importcert to import the rootCa certificate into each node keystore:

keytool -importcert

Configuration

114

 -keystore 10.200.175.15.jks
 -alias rootCa
 -file rootCa.crt
 -noprompt
 -keypass myKeyPass
 -storepass myKeyPass

The -noprompt option allows the command to use the specified values rather than prompting for input.

The keystore file now has two entries, one for the rootCa certificate and one for the node certificate:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

rootca, Sep 10, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):
 CD:F2:A5:6F:EC:DA:B9:9E:C1:8D:89:09:AE:FF:DB:BD:56:F6:7D:79
10.200.175.15, Sep 10, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1):
 D6:1B:6C:FE:E3:3B:4B:3D:E0:F0:38:EA:54:AD:F0:E7:1E:D4:CB:4D

Import node's signed certificate into node keystore for each node

9.
keytool -importcert
 -keystore 10.200.175.15.jks
 -alias 10.200.175.15
 -file 10.200.175.15.crt_signed
 -noprompt
 -keypass myKeyPass
 -storepass myKeyPass

The resulting file will appear similar to the result from the previous step, but the node certificate
originally created is replaced with the signed node certificate.

Create a server truststore

10.A server truststore file can be used to establish a chain of trust between the nodes of the cluster.

keytool -importcert
 -keystore generic-server-truststore.jks
 -alias rootCa
 -file rootCa.crt
 -noprompt
 -keypass myPass
 -storepass truststorePass

The resulting truststore file can be inspected using the keytool -list command:

keytool -list
 -keystore generic-server-truststore.jks
 -storepass truststorePass

and an example of the truststore file will include a rootCa certificate entry:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

rootca, Sep 10, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):
 CD:F2:A5:6F:EC:DA:B9:9E:C1:8D:89:09:AE:FF:DB:BD:56:F6:7D:79

Configuration

115

Copy the truststore file to each node

11.The truststore file must be copied to each node. If a node is used to generate the file, copy the file to a
location of choice and name the file with a standard format, such as server-truststore.jks. This
example shows the copy command for a Linux server with a tarball installation of Cassandra and stores
the file in the configuration directory of Cassandra:

cp ~/generic-server-truststore.jks /usr/local/lib/cassandra/conf/server-
truststore.jks

Copy the each node keystore file to each node

12.Each node file must have a copy of its keystore file. If a node is used to generate the file, copy the file
to a location of choice. This example shows the secure remote copy commands for a Linux server with
a tarball installation of Cassandra, where the certificates were generated on a single node. The file is
stored in the configuration directory of Cassandra in this example:

scp -r 10.200.175.150.jks /usr/local/lib/cassandra/conf/10.200.175.150.jks

Node-to-node encryption
Node-to-node (internode) encryption protects data transferred between nodes in a cluster, including gossip communications, using SSL (Secure Sockets Layer).

Node-to-node encryption protects data transferred between nodes in a cluster, including gossip
communications, using SSL (Secure Sockets Layer).

Prerequisites
Prepare SSL certificates with a self-signed CA for production, or prepare SSL certificates for development.

To enable node-to-node SSL, you must set the server_encryption_options in the cassandra.yaml file.

Procedure
Enable server_encryption_options on each node

1. Modify the cassandra.yaml file with the following settings:

For production clusters:

server_encryption_options:
 internode_encryption: all
 keystore: /usr/local/lib/cassandra/conf/server-keystore.jks
 keystore_password: myKeyPass
 truststore: /usr/local/lib/cassandra/conf/server-truststore.jks
 truststore_password: truststorePass
 # More advanced defaults below:
 protocol: TLS
 algorithm: SunX509
 store_type: JKS
 cipher_suites: [TLS_RSA_WITH_AES_256_CBC_SHA]
 require_client_auth: true

This file uses the certificates prepared with a self-signed CA.

For development clusters:

server_encryption_options:
 internode_encryption: all
 keystore: /conf/keystore.node0
 keystore_password: cassandra
 truststore: /conf/truststore.node0
 truststore_password: cassandra

Configuration

116

 # More advanced defaults below:
 protocol: TLS
 algorithm: SunX509
 store_type: JKS
 cipher_suites: [TLS_RSA_WITH_AES_256_CBC_SHA]
 require_client_auth: true

This file uses the certificates prepared for development.

Internode encryption can be set to four different choices:

all

All traffic is encrypted.

none

No traffic is encrypted.

dc

Traffic between datacenters is encrypted.

rack

Traffic between racks is encrypted.

Set appropriate paths to the keystore and truststore files. Set the passwords to the passwords
set during keystore and truststore generation. If two-way certificate authentication is desired, set
require_client_auth to true.

Restart cassandra

2. Restart cassandra to make changes effective.

$ kill -9 cassandra_pid
$ cassandra

3. Check the logs to discover if SSL encryption has been started. On Linux, use the grep command:

$ grep SSL install_location/logs/system.log

grep SSL %CASSANDRA_HOME%\logs\system.log

The resulting line will be similar to this example:

INFO [main] 2016-09-12 18:34:14,478 MessagingService.java:511 - Starting
 Encrypted Messaging Service on SSL port 7001

Client-to-node encryption
Client-to-node encryption protects data in flight from client machines to a database cluster using SSL (Secure Sockets Layer).

Client-to-node encryption protects data in flight from client machines to a database cluster using SSL
(Secure Sockets Layer). It establishes a secure channel between the client and the coordinator node.

Prerequisites
Prepare SSL certificates with a self-signed CA for production, or prepare SSL certificates for development.

To enable client-to-node SSL, set the client_encryption_options in the cassandra.yaml file.

Procedure
On each node under client_encryption_options:

1. Enable encryption.

Configuration

117

Enable client_encryption_options on each node

2. Modify the cassandra.yaml file with the following settings:

For production clusters:

client_encryption_options:
 enabled: true
 # If enabled and optional is set to true encrypted and unencrypted
 connections are handled.
 optional: false
 keystore: /usr/local/lib/cassandra/conf/server-keystore.jks
 keystore_password: myKeyPass

 require_client_auth: true
 # Set trustore and truststore_password if require_client_auth is true
 truststore: /usr/local/lib/cassandra/conf/server-truststore.jks
 truststore_password: truststorePass
 protocol: TLS
 algorithm: SunX509
 store_type: JKS
 cipher_suites: [TLS_RSA_WITH_AES_256_CBC_SHA]

This file uses the certificates prepared with a self-signed CA.

For development clusters:

client_encryption_options:
 enabled: true
 # If enabled and optional is set to true encrypted and unencrypted
 connections are handled.
 optional: false
 keystore: conf/keystore.node0
 keystore_password: cassandra

 require_client_auth: true
 # Set trustore and truststore_password if require_client_auth is true
 truststore: conf/truststore.node0
 truststore_password: cassandra
 protocol: TLS
 algorithm: SunX509
 store_type: JKS
 cipher_suites: [TLS_RSA_WITH_AES_256_CBC_SHA]

This file uses the certificates prepared for development.

Set appropriate paths to the keystore and truststore files. Set the passwords to the passwords
set during keystore and truststore generation. If two-way certificate authentication is desired, set
require_client_auth to true. Enabling two-way certificate authentication allows tools to
connect to a remote node. For local access to run cqlsh on a local node with SSL encryption,
require_client_auth can be set to false

Enabling client encryption will encrypt all traffic on the native_transport_port (default: 9042).
If both encrypted and unencrypted traffic is required, an additional cassandra.yaml setting must be
enabled. The native_transport_port_ssl (default: 9142) sets an additional dedicated port to
carry encrypted transmissions, while native_transport_port carries unencrypted transmissions.

Note: It is beneficial to install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files if this option is enabled.

Restart cassandra

3. Restart cassandra to make changes effective.

Configuration

118

$ kill -9 cassandra_pid
$ cassandra

Using cqlsh with SSL
Using a cqlshrc file with SSL encryption using a self-signed CA.

Using a cqlshrc file is the easiest method of getting cqlshrc settings. The cqlshrc.sample provides an
example that can be copied as a starting point.

Prerequisites
Prepare SSL certificates with a self-signed CA for production, or prepare SSL certificates for development.
Additionally, configure client-to-node encryption.

Procedure
1. To run cqlsh with SSL encryption, create a .cassandra/cqlshrc file in your home or client program

directory with the following settings:

For production clusters:

[authentication]
username = fred
password = !!bang!!$

[connection]
hostname = 127.0.0.1
port = 9042
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
certfile = ~/.cassandra/rootCa.crt
;; Optional, true by default
validate = true

;; To be provided when require_client_auth=true
userkey = ~/.cassandra/rootCa.key

;; To be provided when require_client_auth=true
usercert = ~/.cassandra/rootCa.crt

This file uses the certificates prepared with a self-signed CA.

For development clusters:

[authentication]
username = fred
password = !!bang!!$

[connection]
hostname = 127.0.0.1
port = 9042
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
certfile = ~/keys/node0.cer.pem
Optional, true by default
validate = true
The next 2 lines must be provided when require_client_auth = true in the
 cassandra.yaml file

Configuration

119

userkey = ~/node0.key.pem
usercert = ~/node0.cer.pem

[certfiles]
Optional section, overrides the default certfile in the [ssl] section
 for 2 way SSL
172.31.10.22 = ~/keys/node0.cer.pem
172.31.8.141 = ~/keys/node1.cer.pem

This file uses the certificates prepared for development. The use of the same IP addresses in the
[certfiles] section, as is used to generate the dname of the certificates, is required for two-way
SSL encryption. Each node must have a line in the [certfiles] section for client-to-remote-node or
node-to-node.

When validate is enabled, to verify that the certificate is trusted the host in the certificate is compared
to the host of the machine to which it is connected. Note that the rootCa certificate and key are supplied
to access the trustchain. The SSL certificate must be provided either in the configuration file or as an
environment variable. The environment variables (SSL_CERTFILE and SSL_VALIDATE) override any
options set in this file.

Note: Additional settings in the cqlshrc file are described in Creating and using the cqlshrc file.

An optional section, [certfiles], will override the default certfile in the [ssl] section. The
use of the same IP addresses in the [certfiles] section, as is used to generate the dname
of the certificates, is required for two-way SSL encryption. Each node must have a line in the
[certfiles] section for client-to-remote-node or node-to-node. Using certfiles] is more common
for development clusters.

2. Start cqlsh with the --ssl option for cqlsh to local node encrypted connection.

$ cqlsh --ssl ## Package installations
$ install_location/bin/cqlsh --ssl ## Tarball installations

3. A username and password can also be supplied at cqlsh startup. This example provides the username
cassandra with password cassandra.

$ cqlsh --ssl ## Package installations
$ install_location/bin/cqlsh --ssl -u cassandra -p cassandra ## Tarball
 installations

Note that a username and password can be entered in the cqlshrc file so that it will be automatically
read each time cqlsh is started.

4. For a remote node encrypted connection, start cqlsh with the --ssl option and an IP address:

$ cqlsh --ssl ## Package installations
$ install_location/bin/cqlsh --ssl 172.31.10.22 ## Tarball installations

Using nodetool (JMX) with SSL encryption
Using nodetool with SSL encryption.

Using nodetool with SSL requires some JMX setup. Changes to cassandra-env.sh are required, and a
configuration file, ~/.cassandra/nodetool-ssl.properties, is created.

Prerequisites
Prepare SSL certificates with a self-signed CA for production, or prepare SSL certificates for development.
Additionally, configure client-to-node encryption.

/en/cql/3.3/cql/cql_reference/cqlshUsingCqlshrc.html
/en/cql/3.3/cql/cql_reference/cqlsh.html
/en/cql/3.3/cql/cql_reference/cqlsh.html
/en/cql/3.3/cql/cql_reference/cqlsh.html

Configuration

120

Procedure
1. First, follow steps #1-8 in Enabling JMX authentication and authorization on page 101 if authentication

and authorization are required.

2. To run nodetool with SSL encryption, some additional changes are required to cassandra-env.sh.
The following settings must be added to the file. Use the file path to the keystore and truststore, and
appropriate passwords for each file. These changes must be made on each node in the cluster.

For production:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.ssl=true"
 JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.need.client.auth=true"
 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.registry.ssl=true"
 #JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.enabled.protocols=<enabled-protocols>"
 #JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.enabled.cipher.suites=<enabled-cipher-
suites>"

 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStore=/usr/local/lib/cassandra/
conf/server-keystore.jks"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStorePassword=myKeyPass"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStore=/usr/local/lib/cassandra/
conf/server-truststore.jks"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStorePassword=truststorePass"

For development:

 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.ssl=true"
 JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.need.client.auth=true"
 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.registry.ssl=true"
 #JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.enabled.protocols=<enabled-protocols>"
 #JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.enabled.cipher.suites=<enabled-cipher-
suites>"

 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStore=keystore.node0"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStorePassword=cassandra"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStore=truststore.node0"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStorePassword=cassandra"

Enable SSL for JMX by setting com.sun.management.jmxremote.ssl
to true. If two-way certificate authentication is desired, set
com.sun.management.jmxremote.ssl.need.client.auth to true. If
com.sun.management.jmxremote.registry.ssl is set to true, an RMI registry protected
by SSL will be created and configured by the out-of-the-box management agent when the Java VM
is started. If the com.sun.management.jmxremote.registry.ssl property is set to true, to
have full security then com.sun.management.jmxremote.ssl.need.client.auth must also
be enabled. Set appropriate paths to the keystore and truststore files. Set the passwords to the
passwords set during keystore and truststore generation.

3. Restart Cassandra.

4. To run nodetool with SSL encryption, create a .cassandra/nodetool-ssl.properties file in
your home or client program directory with the following settings on the node on which nodetool will
run.

Configuration

121

For production:

-Dcom.sun.management.jmxremote.ssl=true
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Dcom.sun.management.jmxremote.registry.ssl=true
-Djavax.net.ssl.keyStore=/usr/local/lib/cassandra/conf/server-keystore.jks
-Djavax.net.ssl.keyStorePassword=myKeyPass
-Djavax.net.ssl.trustStore=/usr/local/lib/cassandra/conf/server-
truststore.jks
-Djavax.net.ssl.trustStorePassword=truststorePass

For development:

-Djavax.net.ssl.keyStore=keystore.node0
-Djavax.net.ssl.keyStorePassword=cassandra
-Djavax.net.ssl.trustStore=truststore.node0
-Djavax.net.ssl.trustStorePassword=cassandra
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Dcom.sun.management.jmxremote.registry.ssl=true

5. Start nodetool with the --ssl option for encrypted connection for any nodetool operation.

$ nodetool --ssl info ## Package installations
$ install_location/bin/nodetool -ssl info ## Tarball installations

6. Start nodetool with the --ssl option for encrypted connection and a username and password for
authentication and authorization for any nodetool operation.

$ nodetool --ssl -u cassandra -pw cassandra status ## Package installations
$ install_location/bin/nodetool -ssl -u cassandra -pw cassandra status ##
 Tarball installations

Using jconsole (JMX) with SSL encryption
Using jconsole with SSL encryption.

Using jconsole with SSL requires the same JMX changes to cassandra-env.sh as nodetool. See using
nodetool (JMX) with SSL encryption. There is no need to create nodetool-ssl.properties, but the
same JVM keystore and truststore options must be specified with jconsole on the command line.

Prerequisites
Prepare SSL certificates with a self-signed CA for production, or prepare SSL certificates for development.
Additionally, configure client-to-node encryption.

Procedure
1. Copy the keystore and truststore files created in the prerequisite to the node where jconsole will be run.

In this example, the files are server-keystore.jks and server-truststore.jks.

2. Run jconsole using the JVM options:

jconsole -J-Djavax.net.ssl.keyStore=server-keystore.jks
-J-Djavax.net.ssl.keyStorePassword=myKeyPass
-J-Djavax.net.ssl.trustStore=server-truststore.jks
-J-Djavax.net.ssl.trustStorePassword=truststorePass

If no errors occur, jconsole will start. If connecting to a remote node, enter the hostname and JMX
port, in Remote Process. If using authentication, enter the username and password.

Configuration

122

Configuring firewall port access
Which ports to open when nodes are protected by a firewall.

The following ports must be open to allow bi-directional communication between nodes, including certain
Cassandra ports. Configure the firewall running on nodes in your Cassandra cluster accordingly. Without
open ports as shown, nodes will act as a standalone database server and will not join the Cassandra
cluster.

Table: Public port

Port number. Description

22 SSH port

Table: Cassandra inter-node ports

Port number. Description

7000 Cassandra inter-node cluster communication.

7001 Cassandra SSL inter-node cluster communication.

7199 Cassandra JMX monitoring port.

Table: Cassandra client ports

Port number. Description

9042 Cassandra client port.

9160 Cassandra client port (Thrift).

9142 Default for native_transport_port_ssl, useful when both encrypted and unencrypted connections are required

Configuring gossip settings
Using the cassandra.yaml file to configure gossip.

When a node first starts up, it looks at its cassandra.yaml configuration file to determine the name of the
Cassandra cluster it belongs to; which nodes (called seeds) to contact to obtain information about the other
nodes in the cluster; and other parameters for determining port and range information.

Procedure
In the cassandra.yaml file, set the following parameters:

Property Description

cluster_name Name of the cluster that this node is joining. Must be the same for
every node in the cluster.

listen_address The IP address or hostname that Cassandra binds to for connecting
this node to other nodes.

listen_interface Use this option instead of listen_address to specify the network
interface by name, rather than address/hostname

(Optional) broadcast_address The "public" IP address this node uses to broadcast to other
nodes outside the network or across regions in multiple-region
EC2 deployments. If this property is commented out, the node
uses the same IP address or hostname as listen_address.

Configuration

123

Property Description

A node does not need a separate broadcast_address in
a single-node or single-datacenter installation, or in an EC2-
based network that supports automatic switching between private
and public communication. It is necessary to set a separate
listen_address and broadcast_address on a node with
multiple physical network interfaces or other topologies where not
all nodes have access to other nodes by their private IP addresses.
For specific configurations, see the instructions for listen_address.
The default is the listen_address.

seed_provider A -seeds list is comma-delimited list of hosts (IP addresses) that
gossip uses to learn the topology of the ring. Every node should
have the same list of seeds.

Attention: In multiple data-center clusters, include at least
one node from each datacenter (replication group) in the seed
list. Designating more than a single seed node per datacenter
is recommended for fault tolerance. Otherwise, gossip has to
communicate with another datacenter when bootstrapping a node.

Making every node a seed node is not recommended because of
increased maintenance and reduced gossip performance. Gossip
optimization is not critical, but it is recommended to use a small
seed list (approximately three nodes per datacenter).

storage_port The inter-node communication port (default is 7000). Must be the
same for every node in the cluster.

initial_token For legacy clusters. Set this property for single-node-per-token
architecture, in which a node owns exactly one contiguous range in
the ring space.

num_tokens For new clusters. The number of tokens randomly assigned to this
node in a cluster that uses virtual nodes (vnodes).

Configuring the heap dump directory
Analyzing the heap dump file can help troubleshoot memory problems.

Analyzing the heap dump file can help troubleshoot memory problems. Cassandra starts Java with the
option -XX:+HeapDumpOnOutOfMemoryError. Using this option triggers a heap dump in the event of
an out-of-memory condition. The heap dump file consists of references to objects that cause the heap to
overflow. By default, Cassandra puts the file a subdirectory of the working, root directory when running as
a service. If Cassandra does not have write permission to the root directory, the heap dump fails. If the root
directory is too small to accommodate the heap dump, the server crashes.

To ensure that a heap dump succeeds and to prevent crashes, configure a heap dump directory that is:

• Accessible to Cassandra for writing
• Large enough to accommodate a heap dump

Base the size of the directory on the value of the Java -mx option.

Procedure
Set the location of the heap dump in the cassandra-env.sh file.

1. Open the cassandra-env.sh file for editing.

Configuration

124

2. Scroll down to the comment about the heap dump path:

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR

3. On the line after the comment, set the CASSANDRA_HEAPDUMP_DIR to the path you want to use:

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR CASSANDRA_HEAPDUMP_DIR
 =<path>

4. Save the cassandra-env.sh file and restart.

Configuring virtual nodes
Topics about configuring virtual nodes.

Enabling virtual nodes on a new cluster
Steps and recommendations for enabling virtual nodes (vnodes) on a new cluster.

Generally when all nodes have equal hardware capability, they should have the same number of virtual
nodes (vnodes). If the hardware capabilities vary among the nodes in your cluster, assign a proportional
number of vnodes to the larger machines. For example, you could designate your older machines to use
128 vnodes and your new machines (that are twice as powerful) with 256 vnodes.

Procedure
Set the number of tokens on each node in your cluster with the num_tokens parameter in the
cassandra.yaml file.

The recommended value is 256. Do not set the initial_token parameter.

Related information
Install locations on page 71
Install location topics.

Enabling virtual nodes on an existing production cluster
Steps and recommendations for enabling virtual nodes (vnodes) on an existing production cluster.

You cannot directly convert a single-token nodes to a vnode. However, you can configure another
datacenter configured with vnodes already enabled and let Cassandra automatic mechanisms distribute
the existing data into the new nodes. This method has the least impact on performance.

Procedure
1. Add a new datacenter to the cluster.

2. Once the new datacenter with vnodes enabled is up, switch your clients to use the new datacenter.

3. Run a full repair with nodetool repair.

This step ensures that after you move the client to the new datacenter that any previous writes are
added to the new datacenter and that nothing else, such as hints, is dropped when you remove the old
datacenter.

4. Update your schema to no longer reference the old datacenter.

5. Remove the old datacenter from the cluster.

See Decommissioning a datacenter on page 146.

Configuration

125

Using multiple network interfaces
Steps for configuring Cassandra for multiple network interfaces or when using different regions in cloud implementations.

How to configure Cassandra for multiple network interfaces or when using different regions in cloud
implementations.

You must configure settings in both the cassandra.yaml file and the property file (cassandra-
rackdc.properties or cassandra-topology.properties) used by the snitch.

Configuring cassandra.yaml for multiple networks or across regions in
cloud implementations
In multiple networks or cross-region cloud scenarios, communication between datacenters can only take
place using an external IP address. The external IP address is defined in the cassandra.yaml file using
the broadcast_address setting. Configure each node as follows:

1. In the cassandra.yaml, set the listen_address to the private IP address of the node, and the
broadcast_address to the public address of the node.

This allows Cassandra nodes to bind to nodes in another network or region, thus enabling multiple
data-center support. For intra-network or region traffic, Cassandra switches to the private IP after
establishing a connection.

2. Set the addresses of the seed nodes in the cassandra.yaml file to that of the public IP. Private IP are
not routable between networks. For example:

seeds: 50.34.16.33, 60.247.70.52

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 13.
3. Be sure that the storage_port or ssl_storage_port is open on the public IP firewall.

CAUTION: Be sure to enable encryption and authentication when using public IPs. See Node-to-node
encryption on page 115. Another option is to use a custom VPN to have local, inter-region/ datacenter
IPs.

Additional cassandra.yaml configuration for non-EC2 implementations
If multiple network interfaces are used in a non-EC2 implementation, enable the
listen_on_broadcast_address option.

listen_on_broadcast_address: true

In non-EC2 environments, the public address to private address routing is not automatically enabled.
Enabling listen_on_broadcast_address allows Cassandra to listen on both listen_address and
broadcast_address with two network interfaces.

Configuring the snitch for multiple networks
External communication between the datacenters can only happen when using the broadcast_address
(public IP).

The GossipingPropertyFileSnitch on page 22 is recommended for production. The cassandra-
rackdc.properties file defines the datacenters used by this snitch. Enable the option prefer_local
to ensure that traffic to broadcast_address will re-route to listen_address.

For each node in the network, specify its datacenter in cassandra-rackdc.properties file.

Configuration

126

In the example below, there are two cassandra datacenters and each datacenter is named for its
workload. The datacenter naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (datacenter names are case-sensitive.)

Network A Network B

Node and datacenter:

• node0

dc=DC_A_cassandra
rack=RAC1

• node1

dc=DC_A_cassandra
rack=RAC1

• node2

dc=DC_B_cassandra
rack=RAC1

• node3

dc=DC_B_cassandra
rack=RAC1

• node4

dc=DC_A_analytics
rack=RAC1

• node5

dc=DC_A_search
rack=RAC1

Node and datacenter:

• node0

dc=DC_A_cassandra
rack=RAC1

• node1

dc=DC_A_cassandra
rack=RAC1

• node2

dc=DC_B_cassandra
rack=RAC1

• node3

dc=DC_B_cassandra
rack=RAC1

• node4

dc=DC_A_analytics
rack=RAC1

• node5

dc=DC_A_search
rack=RAC1

Configuring the snitch for cross-region communication in cloud
implementations
Note: Be sure to use the appropriate snitch for your implementation. If your deploying on Amazon EC2,
see the instructions in Ec2MultiRegionSnitch on page 23.

In cloud deployments, the region name is treated as the datacenter name and availability zones are treated
as racks within a datacenter. For example, if a node is in the us-east-1 region, us-east is the datacenter
name and 1 is the rack location. (Racks are important for distributing replicas, but not for datacenter
naming.)

In the example below, there are two cassandra datacenters and each datacenter is named for its
workload. The datacenter naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (datacenter names are case-sensitive.)

For each node, specify its datacenter in the cassandra-rackdc.properties. The dc_suffix option defines the
datacenters used by the snitch. Any other lines are ignored.

Region: us-east Region: us-west

Node and datacenter:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

Node and datacenter:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

Configuration

127

Region: us-east Region: us-west

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-east datacenters:

us-east_1_cassandra
us-east_2_cassandra
us-east_1_analytics
us-east_1_search

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-west datacenters:

us-west_1_cassandra
us-west_2_cassandra
us-west_1_analytics
us-west_1_search

Configuring logging
Cassandra logging functionality using Simple Logging Facade for Java (SLF4J) with a logback backend.

Cassandra provides logging functionality using Simple Logging Facade for Java (SLF4J) with a logback
backend. Logs are written to the system.log and debug.login the Cassandra logging directory. You
can configure logging programmatically or manually. Manual ways to configure logging are:

• Run the nodetool setlogginglevel command.
• Configure the logback-test.xml or logback.xml file installed with Cassandra.
• Use the JConsole tool to configure logging through JMX.

Logback looks for logback-test.xml first, and then for logback.xml file.

The XML configuration files looks like this:

<configuration scan="true">
 <jmxConfigurator />
 <appender name="FILE"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${cassandra.logdir}/system.log</file>
 <rollingPolicy
 class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
 <fileNamePattern>${cassandra.logdir}/system.log.%i.zip</
fileNamePattern>
 <minIndex>1</minIndex>
 <maxIndex>20</maxIndex>
 </rollingPolicy>

 <triggeringPolicy
 class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
 <maxFileSize>20MB</maxFileSize>
 </triggeringPolicy>
 <encoder>
 <pattern>%-5level [%thread] %date{ISO8601} %F:%L - %msg%n</pattern>
 <!-- old-style log format
 <pattern>%5level [%thread] %date{ISO8601} %F (line %L) %msg%n</
pattern>
 -->
 </encoder>
 </appender>

http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html

Configuration

128

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%-5level %date{HH:mm:ss,SSS} %msg%n</pattern>
 </encoder>
 </appender>

 <root level="INFO">
 <appender-ref ref="FILE" />
 <appender-ref ref="STDOUT" />
 </root>

 <logger name="com.thinkaurelius.thrift" level="ERROR"/>
</configuration>

The appender configurations specify where to print the log and its configuration. The first appender directs
logs to a file. The second appender directs logs to the console. You can change the following logging
functionality:

• Rolling policy

• The policy for rolling logs over to an archive
• Location and name of the log file
• Location and name of the archive
• Minimum and maximum file size to trigger rolling

• Format of the message
• The log level

Log levels
The valid values for setting the log level include ALL for logging information at all levels, TRACE through
ERROR, and OFF for no logging. TRACE creates the most verbose log, and ERROR, the least.

• ALL
• TRACE
• DEBUG
• INFO (Default)
• WARN
• ERROR
• OFF

Note: Increasing logging levels can generate heavy logging output on a moderately trafficked cluster.

You can use the nodetool getlogginglevels command to see the current logging configuration.

$ nodetool getlogginglevels
Logger Name Log Level
ROOT INFO
com.thinkaurelius.thrift ERROR

To add debug logging to a class permanently using the logback framework, use nodetool
setlogginglevel to check you have the right class before you set it in the logback.xml file in
install_location/conf. Modify to include the following line or similar at the end of the file:

<logger name="org.apache.cassandra.gms.FailureDetector" level="DEBUG"/>

Restart the node to invoke the change.

Configuration

129

Migrating to logback from log4j
If you upgrade from a previous version of Cassandra that used log4j, you can convert log4j.properties files
to logback.xml using the logback PropertiesTranslator web-application.

Using log file rotation
The default policy rolls the system.log file after the size exceeds 20MB. Archives are compressed in zip
format. Logback names the log files system.log.1.zip, system.log.2.zip, and so on. For more
information, see logback documentation.

Enabling extended compaction logging
You can configure Casandra to collect in-depth information about compaction activity on a node, and write
it to a dedicated log file. For details, see Enabling extended compaction logging.

Commit log archive configuration
Cassandra provides commit log archiving and point-in-time recovery.

Cassandra provides commit log archiving and point-in-time recovery. The commit log is archived at node
startup and when a commit log is written to disk, or at a specified point-in-time. You configure this feature
in the commitlog_archiving.properties configuration file.

The commands archive_command and restore_command expect only a single command with
arguments. The parameters must be entered verbatim. STDOUT and STDIN or multiple commands cannot
be executed. To workaround, you can script multiple commands and add a pointer to this file. To disable a
command, leave it blank.

Procedure
• Archive a commit log segment:

Command archive_command=

%path Fully qualified path of the segment to archive.Parameters

%name Name of the commit log.

Example archive_command=/bin/ln %path /backup/%name

• Restore an archived commit log:

Command restore_command=

%from Fully qualified path of the an archived commitlog segment from the restore_directories.Parameters

%to Name of live commit log directory.

Example restore_command=cp -f %from %to

• Set the restore directory location:

Command restore_directories=

Format restore_directories=restore_directory_location

• Restore mutations created up to and including the specified timestamp:

Command restore_point_in_time=

Format <timestamp> (YYYY:MM:DD HH:MM:SS)

http://logback.qos.ch/translator/
http://logback.qos.ch/manual/appenders.html#FixedWindowRollingPolicy
/en/cql/3.3/cql/cql_reference/compactSubprop.html#enabling-extended-compaction-logging

Configuration

130

Command restore_point_in_time=

Example restore_point_in_time=2013:12:11 17:00:00

Restore stops when the first client-supplied timestamp is greater than the restore point timestamp.
Because the order in which Cassandra receives mutations does not strictly follow the timestamp order,
this can leave some mutations unrecovered.

Generating tokens
If not using virtual nodes (vnodes), you must calculate tokens for your cluster.

If not using virtual nodes (vnodes), you must calculate tokens for your cluster.

The following topics in the Cassandra 1.1 documentation provide conceptual information about tokens:

• Data Distribution in the Ring
• Replication Strategy

About calculating tokens for single or multiple datacenters in Cassandra 1.2
and later
• Single datacenter deployments: calculate tokens by dividing the hash range by the number of nodes in

the cluster.
• Multiple datacenter deployments: calculate the tokens for each datacenter so that the hash range is

evenly divided for the nodes in each datacenter.

For more explanation, see be sure to read the conceptual information mentioned above.

The method used for calculating tokens depends on the type of partitioner:

Calculating tokens for the Murmur3Partitioner
Use this method for generating tokens when you are not using virtual nodes (vnodes) and using the
Murmur3Partitioner (default). This partitioner uses a maximum possible range of hash values from -263 to
+263-1. To calculate tokens for this partitioner:

$ python -c "print [str(((2**64 / number_of_tokens) * i) - 2**63) for i in
 range(number_of_tokens)]"

For example, to generate tokens for 6 nodes:

$ python -c "print [str(((2**64 / 6) * i) - 2**63) for i in range(6)]"

The command displays the token for each node:

['-9223372036854775808', '-6148914691236517206', '-3074457345618258604',
 '-2', '3074457345618258600', '6148914691236517202']

Calculating tokens for the RandomPartitioner
To calculate tokens when using the RandomPartitioner in Cassandra 1.2 clusters, use the Cassandra 1.1
Token Generating Tool.

Hadoop support
Cassandra support for integrating Hadoop with Cassandra.

Cassandra support for integrating Hadoop with Cassandra includes:

• MapReduce

/en/archived/cassandra/1.1/docs/cluster_architecture/partitioning.html#data-distribution-in-the-ring
/en/archived/cassandra/1.1/docs/cluster_architecture/replication.html#replication-strategy
/en/archived/cassandra/1.1/docs/initialize/token_generation.html

Configuration

131

Notice: Apache Pig is no longer supported as of Cassandra 3.0.

You can use Cassandra 3.0 with Hadoop 2.x or 1.x with some restrictions:

• You must run separate datacenters: one or more datacenters with nodes running just Cassandra (for
Online Transaction Processing) and others with nodes running C* & with Hadoop installed. See Isolate
Cassandra and Hadoop for details.

• Before starting the datacenters of Cassandra/Hadoop nodes, disable virtual nodes (vnodes).

Note: You only need to disable vnodes in datacenters with nodes running Cassandra AND Hadoop.

To disable virtual nodes:

1. In the cassandra.yaml file, set num_tokens to 1.
2. Uncomment the initial_token property and set it to 1 or to the value of a generated token for a multi-

node cluster.
3. Start the cluster for the first time.

You cannot convert single-token nodes to vnodes. See Enabling virtual nodes on an existing production
clusterfor another option.

Setup and configuration, described in the Apache docs, involves overlaying a Hadoop cluster on
Cassandra nodes, configuring a separate server for the Hadoop NameNode/JobTracker, and installing a
Hadoop TaskTracker and Data Node on each Cassandra node. The nodes in the Cassandra datacenter
can draw from data in the HDFS Data Node as well as from Cassandra. The Job Tracker/Resource
Manager (JT/RM) receives MapReduce input from the client application. The JT/RM sends a MapReduce
job request to the Task Trackers/Node Managers (TT/NM) and an optional clients MapReduce. The data is
written to Cassandra and results sent back to the client.

The Apache docs also cover how to get configuration and integration support.

http://wiki.apache.org/cassandra/HadoopSupport

Initializing a cluster

132

Input and Output Formats
Hadoop jobs can receive data from CQL tables and indexes and can write their output to Cassandra tables
as well as to the Hadoop FileSystem. Cassandra 3.0 supports the following formats for these tasks:

• CqlInputFormat class: for importing job input into the Hadoop filesystem from CQL tables
• CqlOutputFormat class: for writing job output from the Hadoop filesystem to CQL tables
• CqlBulkOutputFormat class: generates Cassandra SSTables from the output of Hadoop jobs, then

loads them into the cluster using the SSTableLoaderBulkOutputFormat class

Reduce tasks can store keys (and corresponding bound variable values) as CQL rows (and respective
columns) in a given CQL table.

Running the wordcount example
Wordcount example JARs are located in the examples directory of the Cassandra source
code installation. There are CQL and legacy examples in the hadoop_cql3_word_count and
hadoop_word_count subdirectories, respectively. Follow instructions in the readme files.

Isolating Hadoop and Cassandra workloads
When you create a keyspace using CQL, Cassandra creates a virtual datacenter for a cluster, even a one-
node cluster, automatically. You assign nodes that run the same type of workload to the same datacenter.
The separate, virtual datacenters for different types of nodes segregate workloads running Hadoop from
those running Cassandra. Segregating workloads ensures that only one type of workload is active per
datacenter. Separating nodes running a sequential data load, from nodes running any other type of
workload, such as Cassandra real-time OLTP queries is a best practice.

Initializing a cluster
Topics for deploying a cluster.

Initializing a multiple node cluster (single datacenter)
A deployment scenario for a Cassandra cluster with a single datacenter.

This topic contains information for deploying a Cassandra cluster with a single datacenter. If you're new to
Cassandra, and haven't set up a cluster, see Planning and testing cluster deployments.

Prerequisites
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. At minimum, be sure to read Understanding the
architecture on page 11, especially the Data replication section, and Cassandra's rack feature.

• Install Cassandra on each node.
• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seed nodes. Please read

Internode communications (gossip) on page 13.
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch on page 22 and

NetworkTopologyStrategy are recommended for production environments.
• Determine a naming convention for each rack. For example, good names are RAC1, RAC2 or R101,

R102.

/en/landing_page/doc/landing_page/planning/planningAbout.html
/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html#AntiPatRack

Initializing a cluster

133

• The cassandra.yaml configuration file, and property files such as cassandra-rackdc.properties,
give you more configuration options. See the Configuration section for more information.

This example describes installing a 6 node cluster spanning 2 racks in a single datacenter. Each node is
already configured to use the GossipingPropertyFileSnitch and 256 virtual nodes (vnodes).

In Cassandra, "datacenter" is synonymous with "replication group". Both terms refer to a set of nodes
configured as a group for replication purposes.

Procedure
1. Suppose you install Cassandra on these nodes:

node0 110.82.155.0 (seed1)
node1 110.82.155.1
node2 110.82.155.2
node3 110.82.156.3 (seed2)
node4 110.82.156.4
node5 110.82.156.5

Note: It is a best practice to have more than one seed node per datacenter.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access on page 122.

3. If Cassandra is running, you must stop the server and clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• cluster_name:
• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

In new clusters. Seed nodes don't perform bootstrap (the process of a new node joining an existing
cluster.)

• listen_address:

/en/glossary/doc/glossary/gloss_bootstrap.html

Initializing a cluster

134

If the node is a seed node, this address must match an IP address in the seeds list. Otherwise,
gossip communication fails because it doesn't know that it is a seed.

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• rpc_address:listen address for client connections
• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching

snitches on page 147.
• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on, you
can use the same cassandra.yaml file on all of them.

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address:
rpc_address: 0.0.0.0
endpoint_snitch: GossipingPropertyFileSnitch

If rpc_address is set to a wildcard address (0.0.0.0), then broadcast_rpc_address must be set, or the
service won't even start.

5. In the cassandra-rackdc.properties file, assign the datacenter and rack names you determined
in the Prerequisites. For example:

indicate the rack and dc for this node
dc=DC1
rack=RAC1

6. The GossipingPropertyFileSnitch always loads cassandra-topology.properties when
that file is present. Remove the file from each node on any new cluster or any cluster migrated from the
PropertyFileSnitch.

7. After you have installed and configured Cassandra on all nodes, DataStax recommends starting the
seed nodes one at a time, and then starting the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and clear the
data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

8. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

Initializing a cluster

135

$ cd install_location
$ bin/nodetool status

The output should list each node, and show its status as UN (Up Normal).

Related information
Install locations on page 71
Install location topics.

Initializing a multiple node cluster (multiple datacenters)
A deployment scenario for a Cassandra cluster with multiple datacenters.

This topic contains information for deploying a Cassandra cluster with multiple datacenters. If you're new to
Cassandra, and haven't set up a cluster, see Planning and testing cluster deployments.

This example describes installing a six node cluster spanning two datacenters. Each node is configured to
use the GossipingPropertyFileSnitch (multiple rack aware) and 256 virtual nodes (vnodes).

In Cassandra, "datacenter" is synonymous with "replication group". Both terms refer to a set of nodes
configured as a group for replication purposes.

Prerequisites
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. At minimum, be sure to read Understanding the
architecture on page 11 (especially the Data replication on page 17 section) and the rack feature
of Cassandra.

• Install Cassandra on each node.
• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seed nodes. Please read

Internode communications (gossip) on page 13.
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch on page 22 and

NetworkTopologyStrategy are recommended for production environments.
• Determine a naming convention for each datacenter and rack. Examples: DC1, DC2 or 100, 200 /

RAC1, RAC2 or R101, R102. Choose the name carefully; renaming a datacenter is not possible.
• The cassandra.yaml configuration file, and property files such as cassandra-rackdc.properties,

give you more configuration options. See the Configuration section for more information.

Procedure
1. Suppose you install Cassandra on these nodes:

node0 10.168.66.41 (seed1)

/en/landing_page/doc/landing_page/planning/planningAbout.html
/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html#AntiPatRack
/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html#AntiPatRack

Initializing a cluster

136

node1 10.176.43.66
node2 10.168.247.41
node3 10.176.170.59 (seed2)
node4 10.169.61.170
node5 10.169.30.138

Note: It is a best practice to have more than one seed node per datacenter.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access on page 122.

3. If Cassandra is running, you must stop the server and clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• cluster_name:
• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

In new clusters. Seed nodes don't perform bootstrap (the process of a new node joining an existing
cluster.)

• listen_address:

If the node is a seed node, this address must match an IP address in the seeds list. Otherwise,
gossip communication fails because it doesn't know that it is a seed.

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• rpc_address:listen address for client connections
• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching

snitches on page 147.
• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on, you
can use the same cassandra.yaml file on all of them.

/en/glossary/doc/glossary/gloss_bootstrap.html

Initializing a cluster

137

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "10.168.66.41,10.176.170.59"
listen_address:
endpoint_snitch: GossipingPropertyFileSnitch

Note: Include at least one node from each datacenter in the seeds list.

5. In the cassandra-rackdc.properties file, assign the datacenter and rack names you determined
in the Prerequisites. For example:

Nodes 0 to 2

Indicate the rack and dc for this node
dc=DC1
rack=RAC1

Nodes 3 to 5

Indicate the rack and dc for this node
dc=DC2
rack=RAC1

6. The GossipingPropertyFileSnitch always loads cassandra-topology.properties when
that file is present. Remove the file from each node on any new cluster or any cluster migrated from the
PropertyFileSnitch.

7. After you have installed and configured Cassandra on all nodes, DataStax recommends starting the
seed nodes one at a time, and then starting the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and clear the
data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

8. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

$ cd install_location
$ bin/nodetool status

The output should list each node, and show its status as UN (Up Normal).

Initializing a cluster

138

Related information
Install locations on page 71
Install location topics.

Starting and stopping Cassandra
Topics for starting and stopping Cassandra.

Starting Cassandra as a service
Start the Cassandra Java server process for packaged installations.

Start the Cassandra Java server process for packaged installations.

Startup scripts are provided in the /etc/init.d directory. The service runs as the cassandra user.

Procedure
You must have root or sudo permissions to start Cassandra as a service.

On initial start-up, each node must be started one at a time, starting with your seed nodes:

$ sudo service cassandra start

Note: Cassandra 3.8 and later: Startup is aborted if corrupted transaction log files are found and the
affected log files are logged. See the log files for information on resolving the situation.

On Enterprise Linux systems, the Cassandra service runs as a java process.

Starting Cassandra as a stand-alone process
Start the Cassandra Java server process for tarball installations.

Start the Cassandra Java server process for tarball installations.

Procedure
On initial start-up, each node must be started one at a time, starting with your seed nodes.
• To start Cassandra in the background:

$ cd install_location
$ bin/cassandra

Note: Cassandra 3.8 and later: Startup is aborted if corrupted transaction log files are found and the
affected log files are logged. See the log files for information on resolving the situation.

• To start Cassandra in the foreground:

$ cd install_location
$ bin/cassandra -f

Initializing a cluster

139

Stopping Cassandra as a service
Stopping the Cassandra Java server process on packaged installations.

Stopping the Cassandra Java server process on packaged installations.

Procedure

You must have root or sudo permissions to stop the Cassandra service:

$ sudo service cassandra stop

Stopping Cassandra as a stand-alone process
Stop the Cassandra Java server process on tarball installations.

Stop the Cassandra Java server process on tarball installations.

Procedure
Find the Cassandra Java process ID (PID), and then kill the process using its PID number:

$ ps auwx | grep cassandra
$ sudo kill pid

Clearing the data as a service
Remove all data from a package installation. Special instructions for AMI restart.

Remove all data from a package installation.

Procedure
To clear the data from the default directories:

After stopping the service, run the following command:

$ sudo rm -rf /var/lib/cassandra/*

Clearing the data as a stand-alone process
Remove data from a tarball installation.

Remove data from a tarball installation.

Procedure
• To clear all data from the default directories, including the commitlog and saved_caches:

a) Stop the process.
b) Run the following command from the install directory:

$ cd install_location
$ sudo rm -rf data/*

• To clear the only the data directory:

a) Stop the process.
b) Run the following command from the install directory:

$ cd install_location

Operations

140

$ sudo rm -rf data/data/*

Operations
Cassandra operation topics, such as node and datacenter operations, changing replication strategies, configuring compaction and compression, caching, and tuning Bloom filters.

Adding or removing nodes, datacenters, or clusters
Topics for adding or removing nodes, datacenters, or clusters.

Adding nodes to an existing cluster
Steps to add nodes when using virtual nodes.

Virtual nodes (vnodes) greatly simplify adding nodes to an existing cluster:

• Calculating tokens and assigning them to each node is no longer required.
• Rebalancing a cluster is no longer necessary because a node joining the cluster assumes responsibility

for an even portion of the data.

For a detailed explanation about how vnodes work, see Virtual nodes on page 16.

Note: If you do not use vnodes, see Adding single-token nodes to a cluster on page 150.

Procedure
Be sure to use the same version of Cassandra on all nodes in the cluster. See Installing earlier releases.

1. Install Cassandra on the new nodes, but do not start Cassandra.

If your Cassandra installation on Debian or Windows installation starts automatically, you must stop the
node and clear the data.

2. Depending on the snitch used in the cluster, set either the properties in the cassandra-
topology.properties or the cassandra-rackdc.properties file:

• The PropertyFileSnitch uses the cassandra-topology.properties file.
• The GossipingPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, and GoogleCloudSnitch use

the cassandra-rackdc.properties file.

3. Set the following properties in the cassandra.yaml file:

auto_bootstrap

If this option has been set to false, you must set it to true. This option is not listed in the default
cassandra.yaml configuration file and defaults to true.

cluster_name

The name of the cluster the new node is joining.

listen_address/broadcast_address

Can usually be left blank. Otherwise, use IP address or host name that other Cassandra nodes use to
connect to the new node.

endpoint_snitch

The snitch Cassandra uses for locating nodes and routing requests.

num_tokens

The number of vnodes to assign to the node. If the hardware capabilities vary among the nodes in your
cluster, you can assign a proportional number of vnodes to the larger machines.

seed_provider

Operations

141

Make sure that the new node lists at least one node in the existing cluster. The -seeds list determines which
nodes the new node should contact to learn about the cluster and establish the gossip process.

Note: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list. Do not make
all nodes seed nodes. Please read Internode communications (gossip) on page 13.

Other non-default settings

Change any other non-default settings you have made to your existing cluster in the cassandra.yaml
file and cassandra-topology.properties or cassandra-rackdc.properties files. Use the diff
command to find and merge any differences between existing and new nodes.

4. Start the bootstrap node.

5. Use nodetool status to verify that the node is fully bootstrapped and all other nodes are up (UN) and not
in any other state.

6. After all new nodes are running, run nodetool cleanup on each of the previously existing nodes to
remove the keys that no longer belong to those nodes. Wait for cleanup to complete on one node
before running nodetool cleanup on the next node.

Cleanup can be safely postponed for low-usage hours.

Related tasks
Starting Cassandra as a service on page 138
Start the Cassandra Java server process for packaged installations.

Starting Cassandra as a stand-alone process on page 138
Start the Cassandra Java server process for tarball installations.

Related information
The nodetool utility on page 183
A list of the available commands for managing a cluster.

Install locations on page 71
Install location topics.

Adding a datacenter to a cluster
Steps for adding a datacenter to an existing cluster.

Steps for adding a datacenter to an existing cluster.

Procedure
1. Configure the keyspace and create the new datacenter:

a) Use ALTER KEYSPACE to configure all user-created, system, and DataStax Enterprise-defined
keyspaces to use the NetworkTopologyStrategy.

This is necessary for multiple datacenter clusters because nodetool rebuild (10 on page 142)
requires a replica of these keyspaces in the specified source datacenter.

Table: System and DataStax Enterprise-defined keyspaces

System keyspaces DataStax Enterprise keyspaces

system_distributed dse_perf

system_auth dse_security

system_traces dse_leases

b) Create a new datacenter with a replication factor of 0:

You can use cqlsh to create or alter a keyspace:

CREATE KEYSPACE "sample-ks" WITH REPLICATION =

/en/glossary/doc/glossary/gloss_bootstrap.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html
/en/datastax_enterprise/5.0/datastax_enterprise/mngServ/performSrv/configPerformanceService.html
/en/datastax_enterprise/5.0/datastax_enterprise/sec/configSecKeyspaceReplication.html
/en/datastax_enterprise/5.0/datastax_enterprise/ana/settingReplFactorAnalyticsKeyspaces.html

Operations

142

 { 'class' : 'NetworkTopologyStrategy', 'ExistingDC' : 3 }, 'NewDC1' :
 0;

2. Install Cassandra on each new node.

Be sure to use the same version of Cassandra on all nodes in the cluster. See Installing earlier
releases.

3. Configure cassandra.yaml on each new node:

a) In the cassandra.yaml file, add the auto_bootstrap setting, and set it to false:

auto_bootstrap: false

Note: This property is not included in cassandra.yaml. By default, each node bootstraps when it
starts, which means it gets data from other nodes in the datacenter. When starting a new datacenter,
you do not want this to happen; instead, you want to add the appropriate data to each new node.

b) Set other cassandra.yaml properties, such as -seeds and endpoint_snitch, to match the settings
in the cassandra.yaml files on other nodes in the cluster. See Initializing a multiple node cluster
(multiple datacenters) on page 135.

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 13.

4. On each new node, follow the configuration of the other nodes in the cluster to make the correct token
assignment:

a) To enable vnodes on the new node, set num_tokens. The recommended value is 256. Do not set
the initial_token. DataStax Enterprise uses other values.

b) To configure the node for single-node-per-token architecture, generate the initial token for each
node. Add this as the value for each node's initial_token property, and make sure the num_tokens is
commented out. See Generating tokens on page 130 and Adding or replacing single-token nodes.

5. On each new node, add the new datacenter definition to the properties file for the type of snitch used in
the cluster:

Snitch Configuring file

PropertyFileSnitch cassandra-topology.properties

GossipPropertyFileSnitch

Ec2Snitch

Ec2MultiRegionSnitch

GoogleCloudSnitch

cassandra-rackdc.properties

You do not need to restart the node after adding the snitch configuration.

6. On each new node, remove the cassandra-topology.properties file as necessary.

The GossipingPropertyFileSnitch always loads cassandra-topology.properties when
that file is present. Remove the file from each node on any new cluster or any cluster migrated from the
PropertyFileSnitch.

7. To ensure that your clients recognize the new datacenter, make sure they are configured to use the
DCAwareRoundRobinPolicy. Review the programming instructions for your driver.

8. Review the consistency level for global or per-operation level for multiple datacenter operation:

a) If using a QUORUM consistency level for reads or writes, check whether LOCAL_QUORUM or
EACH_QUORUM meets your requirements for multiple datacenters.

b) If using the ONE consistency level for reads or writes, check whether LOCAL_ONE consistency level
meets your requirements for multiple datacenters.

9. Start Cassandra on the new nodes.

10.After all nodes are running in the cluster, run nodetool rebuild on each node in the new datacenter.

/en/glossary/doc/glossary/gloss_bootstrap.html
/en/datastax_enterprise/5.0/datastax_enterprise/config/configVnodes.html
/en/developer/driver-matrix/doc/common/driverMatrix.html

Operations

143

This step ensures that the new nodes recognize the existing datacenters in the cluster.

You can run rebuild on one or more nodes at the same time. The choice depends on whether your
cluster can handle the extra I/O and network pressure of running on multiple nodes. Run on one node
at a time to reduce the impact on the existing cluster.

$ nodetool rebuild -- name_of_existing_data_center

Attention: If you don't specify the existing datacenter in the command line, the new nodes will appear
to rebuild successfully, but will not contain any data.

If you miss this step, requests to the new datacenter with LOCAL_ONE or ONE consistency levels may
fail if the existing datacenters are not completely in-sync.

11.On each new node, remove the auto_bootstrap: false property in the cassandra.yaml file, or change
its value to true.

This returns this parameter to its normal setting, which allows the node to get all the data from the other
nodes in the datacenter if it is restarted. You do not have to restart the node after changing this setting.
It will take effect at the next restart.

Related tasks
Starting Cassandra as a service on page 138
Start the Cassandra Java server process for packaged installations.

Starting Cassandra as a stand-alone process on page 138
Start the Cassandra Java server process for tarball installations.

Related information
Install locations on page 71
Install location topics.

Replacing a dead node or dead seed node
Steps to replace a node that has died for some reason, such as hardware failure.

Steps to replace a node that has died for some reason, such as hardware failure.

The procedure for replacing a dead node is the same for vnodes and single-token nodes. Extra steps are
required for replacing dead seed nodes.

Procedure
1. Run nodetool status to verify that the node is dead (DN).

2. Record the datacenter, address, and rack settings of the dead node; you will use these later.

3. Add the replacement node to the network and record its IP address.

4. If the dead node was a seed node, change the cluster's seed node configuration on each node:

a) In the cassandra.yaml file for each node, remove the IP address of the dead node from the -
seeds list in the seed-provider property.

b) If the cluster needs a new seed node to replace the dead node, add the new node's IP address to
the - seeds list.

/en/glossary/doc/glossary/gloss_seed.html

Operations

144

Attention: In multiple data-center clusters, include at least one node from each datacenter
(replication group) in the seed list. Designating more than a single seed node per datacenter is
recommended for fault tolerance. Otherwise, gossip has to communicate with another datacenter
when bootstrapping a node.

Making every node a seed node is not recommended because of increased maintenance and
reduced gossip performance. Gossip optimization is not critical, but it is recommended to use a
small seed list (approximately three nodes per datacenter).

c) Restart the node.

5. On an existing node, gather setting information for the new node from the cassandra.yaml file:

• cluster_name

• endpoint_snitch

• Other non-default settings: Use the diff tool to compare current settings with default settings.

6. Gather rack and datacenter information:

• If the cluster uses the PropertyFileSnitch, record the rack and data assignments listed in the
cassandra-topology.properties file, or copy the file to the new node.

• If the cluster uses the GossipPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, or
GoogleCloudSnitch, record the rack and datacenter assignments in the dead node's cassandra-
rackdc.properties file.

7. Make sure that the new node meets all prerequisites and then Install Cassandra on the new node, but
do not start Cassandra.

Note: Be sure to install the same version of Cassandra as is installed on the other nodes in the cluster.
If not using the latest version, see Installing earlier releases.

8. If Cassandra automatically started on the node, stop and clear the data that was added automatically
on startup.

9. Add values to the following properties in cassandara.yaml file from the information you gathered earlier:

• auto_bootstrap: If this setting exists and is set to false, set it to true. (This setting is not included
in the default cassandra.yaml configuration file.)

• cluster_name
• seed list

10.Add the rack and datacenter configuration:

• If the cluster uses the GossipPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, or
GoogleCloudSnitch:

1. Add the dead node's rack and datacenter assignments to the cassandra-rackdc.properties file on
the replacement node.

Note: Do not remove the entry for the dead node's IP address yet.
2. Delete the cassandra-topology.properties file.

• If the cluster uses the PropertyFileSnitch:

1. Copy the cassandra-topology.properties file from an existing node, or add the settings to
the local copy.

2. Edit the file to add an entry with the new node's IP address and the dead node's rack and
datacenter assignments.

11.Start the new node with the replace_address option, passing in the IP address of the dead node.

Package installations:

1. Add the following option to cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=address_of_dead_node

2. Start the node.

Operations

145

3. After the node bootstraps, remove the replace-address parameter from cassandra-env.sh.
4. Restart the node.

Tarball installations:

• Start Cassandra with this option:

$ sudo bin/cassandra -Dcassandra.replace_address=address_of_dead_node

12.Run nodetool status to verify that the new node has bootstrapped successfully.

13.Wait at least 72 hours and then remove the old node's IP address from the cassandra-
topology.properties or cassandra-rackdc.properties file.

This ensures that old node's information is removed from gossip. If removed from the property file too
soon, problems may result. Use nodetool gossipinfo to check the gossip status. The node is still in
gossip until LEFT status disappears.

Replacing a running node
Two methods for replacing a node with a new node, such as when updating to newer hardware or performing proactive maintenance.

Steps to replace a node with a new node, such as when updating to newer hardware or performing
proactive maintenance.

You can replace a running node in two ways:

• Adding a node and then decommissioning the old node on page 145
• Using nodetool to replace a running node on page 146

Note: To change the IP address of a node, simply change the IP of node and then restart Cassandra. If
you change the IP address of a seed node, you must update the -seeds parameter in the seed_provider list
in each node's cassandra.yaml file.

Adding a node and then decommissioning the old node
You must prepare and start the replacement node, integrate it into the cluster, and then decommission the
old node.

Procedure
Be sure to use the same version of Cassandra on all nodes in the cluster. See Installing earlier releases.

1. Prepare and start the replacement node, as described in Adding nodes to an existing cluster.

Note: If not using vnodes, see Adding single-token nodes to a cluster on page 150.

2. Confirm that the replacement node is alive:

• Run nodetool ring if not using vnodes.
• Run nodetool status if using vnodes.

The status should show:

• nodetool ring: Up
• nodetool status: UN

3. Note the Host ID of the original node; it is used in the next step.

4. Using the Host ID of the original node, decommission the original node from the cluster using the
nodetool decommission command.

5. Run nodetool cleanup on all the other nodes in the same datacenter.

Operations

146

Using nodetool to replace a running node

This method allows you to replace a running node while avoiding streaming the data twice or running
cleanup.

CAUTION: If using a consistency level of ONE, you risk losing data because the node might contain the
only copy of a record. Be absolutely sure that no application uses consistency level ONE.

Procedure
1. Stop Cassandra on the node to be replaced.

2. Follow the instructions for replacing a dead node using the old node’s IP address for -
Dcassandra.replace_address.

3. Ensure that consistency level ONE is not used on this node.

Related tasks
Removing a node on page 147
Reduce the size of a datacenter.

Moving a node from one rack to another
A common task is moving a node from one rack to another. For example, when using
GossipPropertyFileSnitch, a common error is mistakenly placing a node in the wrong rack. To correct the
error, use one of the following procedures.

• The preferred method is to decommission the node and re-add it to the correct rack and datacenter.

• This method takes longer to complete than the alternative method. Data is moved that the
decommissioned node doesn't need anymore. Then the node gets new data while bootstrapping.
The alternative method does both operations simultaneously.

• An alternative method is to update the node's topology and restart the node. Once the node is up, run a
full repair on the cluster.

CAUTION: This method is not preferred because until the repair is completed, the node may blindly
handle requests for data the node doesn't yet have. To mitigate this problem with request handling, start
the node with -Dcassandra.join_ring=false after repairing once, then fully join the node to the
cluster using the JMX method org.apache.cassandra.db.StorageService.joinRing(). The
node will be less likely to be out of sync with other nodes before it serves any requests. After joining
the node to the cluster, repair the node again, so that any writes missed during the first repair will be
captured.

Decommissioning a datacenter
Steps to properly remove a datacenter so no information is lost.

Steps to properly remove a datacenter so no information is lost.

Procedure
1. Make sure no clients are still writing to any nodes in the datacenter.

2. Run a full repair with nodetool repair.

This ensures that all data is propagated from the datacenter being decommissioned.

3. Change all keyspaces so they no longer reference the datacenter being removed.

4. Run nodetool decommission on every node in the datacenter being removed.

/en/cql/3.3/cql/cql_reference/consistency_r.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Operations

147

Removing a node
Reduce the size of a datacenter.

Use these instructions when you want to remove nodes to reduce the size of your cluster, not for replacing
a dead node.

Attention: If you are not using virtual nodes (vnodes), you must rebalance the cluster.

Procedure
• Check whether the node is up or down using nodetool status:

The nodetool command shows the status of the node (UN=up, DN=down):

• If the node is up, run nodetool decommission.

This assigns the ranges that the node was responsible for to other nodes and replicates the data
appropriately.

Use nodetool netstats to monitor the progress.
• If the node is down, choose the appropriate option:

• If the cluster uses vnodes, remove the node using the nodetool removenode command.
• If the cluster does not use vnodes, before running the nodetool removenode command, adjust your

tokens to evenly distribute the data across the remaining nodes to avoid creating a hot spot.
• If removenode fails, run nodetool assassinate.

Switching snitches
Steps for switching snitches.

Because snitches determine how Cassandra distributes replicas, the procedure to switch snitches depends
on whether or not the topology of the cluster will change:

• If data has not been inserted into the cluster, there is no change in the network topology. This means
that you only need to set the snitch; no other steps are necessary.

• If data has been inserted into the cluster, it's possible that the topology has changed and you will need
to perform additional steps.

• If data has been inserted into the cluster that must be kept, change the snitch without changing the
topology. Then add a new datacenter with new nodes and racks as desired. Finally, remove nodes from
the old datacenters and racks. Simply altering the snitch and replication to move some nodes to a new
datacenter will result in data being replicated incorrectly.

A change in topology means that there is a change in the datacenters and/or racks where the nodes are
placed. Topology changes may occur when the replicas are placed in different places by the new snitch.
Specifically, the replication strategy places the replicas based on the information provided by the new
snitch. The following examples demonstrate the differences:

• No topology change

Change from: five nodes using the SimpleSnitch in a single datacenter

Operations

148

To: five nodes in one datacenter and 1 rack using a network snitch such as the
GossipingPropertyFileSnitch

• Topology changes

• Change from: 5 nodes using the SimpleSnitch in a single datacenter

To: 5 nodes in 2 datacenters using the PropertyFileSnitch (add a datacenter).

Note: If "splitting" one datacenter into two, create a new datacenter with new nodes. Alter the
keyspace replication settings for the keyspace that originally existed to reflect that two datacenters
now exist. Once data is replicated to the new datacenter, remove the number of nodes from the
original datacenter that have "moved" to the new datacenter.

• Change From: 5 nodes using the SimpleSnitch in a single datacenter

To: 5 nodes in 1 datacenter and 2 racks using the RackInferringSnitch (add rack information).

Procedure
Steps for switching snitches:

1. Create a properties file with datacenter and rack information.

• cassandra-rackdc.properties

GossipingPropertyFileSnitch on page 22, Ec2Snitch, and Ec2MultiRegionSnitch only.
• cassandra-topology.properties

All other network snitches.

2. Copy the cassandra-rackdc.properties or cassandra-topology.properties file to the Cassandra
configuration directory on all the cluster's nodes. They won't be used until the new snitch is enabled.

3. Change the snitch for each node in the cluster in the node's cassandra.yaml file. For example:

endpoint_snitch: GossipingPropertyFileSnitch

4. If the topology has not changed, you can restart each node one at a time.

Any change in the cassandra.yaml file requires a node restart.

5. If the topology of the network has changed, but no datacenters are added:

a) Shut down all the nodes, then restart them.
b) Run a sequential repair and nodetool cleanup on each node.

6. If the topology of the network has changed and a datacenter is added:

a) Create a new datacenter.
b) Replicate data into new datacenter. Remove nodes from old datacenter.
c) Run a sequential repair and nodetool cleanup on each node.

Related concepts
Snitches on page 20
A snitch determines which datacenters and racks nodes belong to.

Changing keyspace replication strategy
Changing the strategy of a keyspace from SimpleStrategy to NetworkTopologyStrategy.

A keyspace is created with a strategy. For development work, the SimpleStrategy class is acceptable.
For production work, the NetworkTopologyStrategy class must be set. To change the strategy, two
steps are required. Altering the distribution of nodes within multiple datacenters when data is present
should be accomplished by adding a datacenter, and then adding data to the new nodes in the new
datacenter and removing nodes from the old datacenter.

https://en/cql/3.3/cql/cql_reference/alter_keyspace_r.html
https://en/cql/3.3/cql/cql_reference/alter_keyspace_r.html
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Operations

149

Procedure
• Change the snitch to a network-aware setting.
• Alter the keyspace properties using the ALTER KEYSPACE command. For example, the keyspace

cycling set to SimpleStrategy is switched to NetworkTopologyStrategy for a single datacenter
DC1.

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :
 'NetworkTopologyStrategy', 'DC1' : 3};

• Alter the keyspace properties using the ALTER KEYSPACE command. For example, the keyspace
cycling set to SimpleStrategy is switched to NetworkTopologyStrategy. Altering a keyspace
to add a datacenter involves additional steps. Simply altering the keyspace may lead to faulty data
replication. See switching snitches for additional information.

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :
 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 2 };

• Run nodetool-repair on each node that is affected by the change. For details, see Updating the
replication factor

It is possible to restrict the replication of a keyspace to selected datacenters, or a single datacenter. To
do this, use the NetworkTopologyStrategy and set the replication factors of the excluded datacenters to
0 (zero), as in the following example:

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :
 'NetworkTopologyStrategy', 'DC1' : 0, 'DC2' : 3, 'DC3' : 0 };

Edge cases for transitioning or migrating a cluster
Unusual migration scenarios without interruption of service.

The information in this topic is intended for the following types of scenarios (without any interruption of
service):

• Transition a cluster on EC2 to a cluster on Amazon virtual private cloud (VPC).
• Migrate from a cluster when the network separates the current cluster from the future location.
• Migrate from an early Cassandra cluster to a recent major version.

Procedure
The following method ensures that if something goes wrong with the new cluster, you still have the existing
cluster until you no longer need it.

1. Set up and configure the new cluster as described in Initializing a cluster on page 132.

Note: If you're not using vnodes, be sure to configure the token ranges in the new nodes to match the
ranges in the old cluster.

2. Set up the schema for the new cluster using CQL.

3. Configure your client to write to both clusters.

Depending on how the writes are done, code changes may be needed. Be sure to use identical
consistency levels.

4. Ensure that the data is flowing to the new nodes so you won't have any gaps when you copy the
snapshots to the new cluster in step 6.

5. Snapshot the old EC2 cluster.

6. Copy the data files from your keyspaces to the nodes.

/en/cql/3.1/cql/cql_using/update_ks_rf_t.html
/en/cql/3.1/cql/cql_using/update_ks_rf_t.html
/en/cql/3.3/cql/cqlIntro.html

Operations

150

• You may be able to copy the data files to their matching nodes in the new cluster, which is simpler
and more efficient. This will work if:

• You are not using vnodes
• The destination is not a different version of Cassandra
• The node ratio is 1:1

• If the clusters are different sizes or if you are using vnodes, use the sstableloader (Cassandra bulk
loader) on page 273 (sstableloader).

7. You can either switch to the new cluster all at once or perform an incremental migration.

For example, to perform an incremental migration, you can set your client to designate a percentage of
the reads that go to the new cluster. This allows you to test the new cluster before decommissioning the
old cluster.

8. Decommission the old cluster, as described in Decommissioning a datacenter on page 146.

Adding single-token nodes to a cluster
Steps for adding nodes in single-token architecture clusters, not vnodes.

Steps for adding nodes in single-token architecture clusters, not vnodes.

To add capacity to a cluster, introduce new nodes in stages or by adding an entire datacenter. Use one of
the following methods:

• Add capacity by doubling the cluster size: Adding capacity by doubling (or tripling or quadrupling)
the number of nodes is less complicated when assigning tokens. Using this method, existing nodes
keep their existing token assignments, and the new nodes are assigned tokens that bisect (or trisect)
the existing token ranges.

• Add capacity for a non-uniform number of nodes: When increasing capacity with this method, you
must recalculate tokens for the entire cluster, and assign the new tokens to the existing nodes.

Note: For DataStax Enterprise clusters, you can use OpsCenter to rebalance a cluster.

Procedure
1. Calculate the tokens for the nodes based on your expansion strategy using the Token Generating Tool.

2. Install Cassandra and configure Cassandra on each new node.

3. If Cassandra starts automatically (Debian), stop the node and clear the data.

4. Configure cassandra.yaml on each new node:

• auto_bootstrap: If false, set it to true.

This option is not listed in the default cassandra.yaml configuration file and defaults to true.
• cluster_name
• cassandra.yaml configuration file/broadcast_address: Usually leave blank. Otherwise, use the IP

address or host name that other Cassandra nodes use to connect to the new node.
• endpoint_snitch
• initial_token: Set according to your token calculations.

CAUTION: If this property has no value, Cassandra assigns the node a random token range and
results in a badly unbalanced ring.

• seed_provider: Make sure that the new node lists at least one seed node in the existing cluster.

Seed nodes cannot bootstrap. Make sure the new nodes are not listed in the -seeds list. Do not
make all nodes seed nodes. See Internode communications (gossip) on page 13.

• Change any other non-default settings in the new nodes to match the existing nodes. Use the diff
command to find and merge any differences between the nodes.

/en/opscenter/6.0/opsc/online_help/opscRebalanceCluster.html
/en/glossary/doc/glossary/gloss_bootstrap.html

Operations

151

5. Depending on the snitch, assign the datacenter and rack names in the cassandra-topology.properties or
cassandra-rackdc.properties for each node.

6. Start Cassandra on each new node in two minutes intervals with consistent.rangemovement turned off:

• Package installations: To each bootstrapped node, add the following option to the /usr/share/
cassandra/cassandra-env.sh file and then start Cassandra:

JVM_OPTS="$JVM_OPTS -Dcassandra.consistent.rangemovement=false

• Tarball installations:

$ bin/cassandra -Dcassandra.consistent.rangemovement=false

The following operations are resource intensive and should be done during low-usage times.

7. After the new nodes are fully bootstrapped, use nodetool move to assign the new initial_token value to
each node that requires one, one node at a time.

8. After all nodes have their new tokens assigned, run nodetool cleanup on each node in the cluster and
wait for cleanup to complete on each node before doing the next node.

This step removes the keys that no longer belong to the previously existing nodes.

Adding a datacenter to a single-token architecture cluster
Steps for adding a datacenter to single-token architecture clusters, not vnodes.

Steps for adding a datacenter to single-token architecture clusters, not vnodes.

Procedure
1. Ensure that you are using NetworkTopologyStrategy for all keyspaces.

2. For each new node, edit the configuration properties in the cassandra.yaml file:

• Set auto_bootstrap to False.
• Set the initial_token. Be sure to offset the tokens in the new datacenter, see Generating tokens

on page 130.
• Set the cluster name.
• Set any other non-default settings.
• Set the seed lists. Every node in the cluster must have the same list of seeds and include at least

one node from each datacenter. Typically one to three seeds are used per datacenter.

3. Update either the properties file on all nodes to include the new nodes. You do not need to restart.

• GossipingPropertyFileSnitch: cassandra-rackdc.properties
• PropertyFileSnitch: cassandra-topology.properties

4. Ensure that your client does not auto-detect the new nodes so that they aren't contacted by the client
until explicitly directed.

5. If using a QUORUM consistency level for reads or writes, check the LOCAL_QUORUM or
EACH_QUORUM consistency level to make sure that the level meets the requirements for multiple
datacenters.

6. Start the new nodes.

7. The GossipingPropertyFileSnitch always loads cassandra-topology.properties when
that file is present. Remove the file from each node on any new cluster or any cluster migrated from the
PropertyFileSnitch.

8. After all nodes are running in the cluster:

a) Change the replication factor for your keyspace for the expanded cluster.
b) Run nodetool rebuild on each node in the new datacenter.

/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Operations

152

Replacing a dead node in a single-architecture cluster
Steps for replacing nodes in single-token architecture clusters, not vnodes.

Steps for replacing nodes in single-token architecture clusters, not vnodes.

Procedure
1. Confirm that the node is dead using nodetool ring on any live node in the cluster.

A Down status indicates the dead node:

2. Install Cassandra on the replacement node.

3. Remove any pre-existing Cassandra data on the replacement node:

$ sudo rm -rf /var/lib/cassandra/*

4. Set auto_bootstrap: true.

If auto_bootstrap is not in the cassandra.yaml file, it automatically defaults to true.

5. Set the initial_token in the cassandra.yaml file to the value of the dead node's token -1.

initial_token: 28356863910078205288614550619314017620

6. Configure any non-default settings in the node's cassandra.yaml to match your existing cluster.

7. Start the new node.

8. After the new node has finished bootstrapping, check that it is up using nodetool ring.

9. Run nodetool repair on each keyspace to ensure the node is fully consistent:

$ nodetool repair -h 10.46.123.12 keyspace_name

10.Remove the dead node.

Backing up and restoring data
Cassandra backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data directory.

About snapshots
A brief description of how Cassandra backs up data.

Cassandra backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data
directory. You can take a snapshot of all keyspaces, a single keyspace, or a single table while the system
is online.

Using a parallel ssh tool (such as pssh), you can snapshot an entire cluster. This provides an eventually
consistent backup. Although no one node is guaranteed to be consistent with its replica nodes at the time
a snapshot is taken, a restored snapshot resumes consistency using Cassandra's built-in consistency
mechanisms.

After a system-wide snapshot is performed, you can enable incremental backups on each node to backup
data that has changed since the last snapshot: each time a memtable is flushed to disk and an SSTable

Operations

153

is created, a hard link is copied into a /backups subdirectory of the data directory (provided JNA is
enabled). Compacted SSTables will not create hard links in /backups because these SSTables do not
contain any data that has not already been linked.

Taking a snapshot
Steps for taking a global snapshot or per node.

Snapshots are taken per node using the nodetool snapshot command. To take a global snapshot, run the
nodetool snapshot command using a parallel ssh utility, such as pssh.

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each
keyspace. You must have enough free disk space on the node to accommodate making snapshots of your
data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to
grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After
the snapshot is complete, you can move the backup files to another location if needed, or you can leave
them in place.

Note: Cassandra can only restore data from a snapshot when the table schema exists. It is recommended
that you also backup the schema. See DESCRIBE SCHEMA in DESCRIBE.

Procedure
Run the nodetool snapshot command, specifying the hostname, JMX port, and keyspace. For example:

$ nodetool -h localhost -p 7199 snapshot mykeyspace

Results
The snapshot is created in data_directory/keyspace_name/table_name-UUID/
snapshots/snapshot_name directory. Each snapshot directory contains numerous .db files that
contain the data at the time of the snapshot.

For example:

• Package installations: /var/lib/cassandra/data/mykeyspace/
users-081a1500136111e482d09318a3b15cc2/snapshots/1406227071618/mykeyspace-
users-ka-1-Data.db

• Tarball installations: install_location/data/data/mykeyspace/
users-081a1500136111e482d09318a3b15cc2/snapshots/1406227071618/mykeyspace-
users-ka-1-Data.db

Deleting snapshot files
Steps to delete snapshot files.

When taking a snapshot, previous snapshot files are not automatically deleted. You should remove old
snapshots that are no longer needed.

The nodetool clearsnapshot command removes all existing snapshot files from the snapshot directory of
each keyspace. You should make it part of your back-up process to clear old snapshots before taking a
new one.

Procedure
1. To delete all snapshots for a node, run the nodetool clearsnapshot command. For example:

$ nodetool -h localhost -p 7199 clearsnapshot

/en/cql/3.3/cql/cql_reference/describe_r.html

Operations

154

To delete snapshots on all nodes at once, run the nodetool clearsnapshot command using a parallel
ssh utility.

2. To delete a single snapshot, run the clearsnapshot command with the snapshot name:

$ nodetool clearsnapshot -t <snapshot_name>

The file name and path vary according to the type of snapshot. See nodetools snapshot for details
about snapshot names and paths.

Enabling incremental backups
Steps to enable incremental backups. When incremental backups are enabled, Cassandra hard-links each memtable flushed to an SSTable to a backups directory under the keyspace data directory.

When incremental backups are enabled (disabled by default), Cassandra hard-links each memtable-
flushed SSTable to a backups directory under the keyspace data directory. This allows storing backups
offsite without transferring entire snapshots. Also, incremental backups combined with snapshots to
provide a dependable, up-to-date backup mechanism. Compacted SSTables will not create hard links in /
backups because these SSTables do not contain any data that has not already been linked.A snapshot at
a point in time, plus all incremental backups and commit logs since that time form a compete backup.

As with snapshots, Cassandra does not automatically clear incremental backup files. DataStax
recommends setting up a process to clear incremental backup hard-links each time a new snapshot is
created.

Procedure
Edit the cassandra.yaml configuration file on each node in the cluster and change the value of
incremental_backups to true.

Restoring from a snapshot
Methods for restoring from a snapshot.

Restoring a keyspace from a snapshot requires all snapshot files for the table, and if using incremental
backups, any incremental backup files created after the snapshot was taken. Streamed SSTables (from
repair, decommission, and so on) are also hardlinked and included.

Note: Restoring from snapshots and incremental backups temporarily causes intensive CPU and I/O
activity on the node being restored.

Restoring from local nodes
This method copies the SSTables from the snapshots directory into the correct data directories.

1. Make sure the table schema exists.

Cassandra can only restore data from a snapshot when the table schema exists. If the schema does
not exist and has not been backed up, you must recreate the schema.

2. If necessary, truncate the table.

Note: You may not need to truncate under certain conditions. For example, if a node lost a disk, you
might restart before restoring so that the node continues to receive new writes before starting the
restore procedure.

Truncating is usually necessary. For example, if there was an accidental deletion of data, the tombstone
from that delete has a later write timestamp than the data in the snapshot. If you restore without
truncating (removing the tombstone), Cassandra continues to shadow the restored data. This behavior
also occurs for other types of overwrites and causes the same problem.

3. Locate the most recent snapshot folder. For example:

/en/cql/3.3/cql/cql_reference/truncate_r.html

Operations

155

data_directory/keyspace_name/table_name-UUID/snapshots/snapshot_name

4. Copy the most recent snapshot SSTable directory to the
data_directory/keyspace/table_name-UUID directory.

5. Run nodetool refresh.

Restoring from centralized backups
This method uses sstableloader to restore snapshots.

1. Make sure the table schema exists.

Cassandra can only restore data from a snapshot when the table schema exists. If the schema does
not exist and has not been backed up, you must recreate the schema.

2. If necessary, truncate the table.

Note: You may not need to truncate under certain conditions. For example, if a node lost a disk, you
might restart before restoring so that the node continues to receive new writes before starting the
restore procedure.

Truncating is usually necessary. For example, if there was an accidental deletion of data, the tombstone
from that delete has a later write timestamp than the data in the snapshot. If you restore without
truncating (removing the tombstone), Cassandra continues to shadow the restored data. This behavior
also occurs for other types of overwrites and causes the same problem.

3. Restore the most recent snapshot using the sstableloader tool on the backed-up SSTables.

The sstableloader streams the SSTables to the correct nodes. You do not need to remove the
commitlogs or drain or restart the nodes.

Restoring a snapshot into a new cluster
Steps for restoring a snapshot by recovering the cluster into another newly created cluster.

Suppose you want to copy a snapshot of SSTable data files from a three node Cassandra cluster with
vnodes enabled (256 tokens) and recover it on another newly created three node cluster (256 tokens). The
token ranges will not match, because the token ranges cannot be exactly the same in the new cluster. You
need to specify the tokens for the new cluster that were used in the old cluster.

Note: This procedure assumes you are familiar with restoring a snapshot and configuring and initializing a
cluster.

Procedure
To recover the snapshot on the new cluster:

1. From the old cluster, retrieve the list of tokens associated with each node's IP:

$ nodetool ring | grep ip_address_of_node | awk '{print $NF ","}' | xargs

2. In the cassandra.yaml file for each node in the new cluster, add the list of tokens you obtained in the
previous step to the initial_token parameter using the same num_tokens setting as in the old cluster.

3. Make any other necessary changes in the new cluster's cassandra.yaml and property files so that the
new nodes match the old cluster settings. Make sure the seed nodes are set for the new cluster.

4. Clear the system table data from each new node:

$ sudo rm -rf /var/lib/cassandra/data/system/*

This allows the new nodes to use the initial tokens defined in the cassandra.yaml when they restart.

5. Start each node using the specified list of token ranges in new cluster's cassandra.yaml:

initial_token: -9211270970129494930, -9138351317258731895,
 -8980763462514965928, ...

/en/cql/3.3/cql/cql_reference/truncate_r.html

Operations

156

6. Create schema in the new cluster. All the schemas from the old cluster must be reproduced in the new
cluster.

7. Stop the node. Using nodetool refresh is unsafe because files within the data directory of a
running node can be silently overwritten by identically named just-flushed SSTables from memtable
flushes or compaction. Copying files into the data directory and restarting the node will not work for the
same reason.

8. Restore the SSTable files snapshotted from the old cluster onto the new cluster using the same
directories, while noting that the UUID component of target directory names has changed. Without
restoration, the new cluster will not have data to read upon restart.

9. Restart the node.

Recovering from a single disk failure using JBOD
Steps for recovering from a single disk failure in a disk array using JBOD (just a bunch of disks).

Steps for recovering from a single disk failure in a disk array using JBOD (just a bunch of disks).

Cassandra might not fail from the loss of one disk in a JBOD array, but some reads and writes may fail
when:

• The operation's consistency level is ALL.
• The data being requested or written is stored on the defective disk.
• The data to be compacted is on the defective disk.

It's possible that you can simply replace the disk, restart Cassandra, and run nodetool repair.
However, if the disk crash corrupted the Cassandra system table, you must remove the incomplete data
from the other disks in the array. The procedure for doing this depends on whether the cluster uses vnodes
or single-token architecture.

Procedure
These steps are supported for Cassandra versions 3.2 and later. If a disk fails on a node in a cluster using
an earlier version of Cassandra, replace the node.

1. Verify that the node has a defective disk and identify the disk:

a) Check the logs on the affected node.

Disk failures are logged in FILE NOT FOUND entries, which identifies the mount point or disk that
has failed.

b) If no FILE NOT FOUND entries exist, see the DSE Troubleshooting.

2. If the node is still running, stop Cassandra and shut down the node.

3. Replace the defective disk and restart the node.

4. If the node cannot restart:

a) Try restarting Cassandra without bootstrapping the node:

Package installations:

1. Add the following option to cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.allow_unsafe_replace=true

2. Start the node.
3. After the node bootstraps, remove the -Dcassandra.allow_unsafe_replace=true

parameter from cassandra-env.sh.
4. Restart the node.

Tarball installations:

• Start Cassandra with this option:

/en/glossary/doc/glossary/gloss_vnode.html
/en/landing_page/doc/landing_page/troubleshooting/trblTOC.html

Operations

157

$ sudo bin/cassandra Dcassandra.allow_unsafe_replace=true

5. If Cassandra restarts, run nodetool repair on the node. If not, replace the node.

6. If the repair succeeds, the node is restored to production. Otherwise, go to 7 on page 157 or 8 on
page 157.

7. For a cluster using vnodes:

a) On the affected node, clear the system directory on each functioning drive.

Example for a node with a three disk JBOD array:

$ -/mnt1/cassandra/data
$ -/mnt2/cassandra/data
$ -/mnt3/cassandra/data

If mnt1 has failed:

$ rm -fr /mnt2/cassandra/data/system
$ rm -fr /mnt3/cassandra/data/system

b) Restart Cassandra without bootstrapping as described in 4 on page 156:

$ -Dcassandra.allow_unsafe_replace=true
c) Run nodetool repair on the node.

If the repair succeeds, the node is restored to production. If not, replace the dead node.

8. For a cluster single-token nodes:

a) On one of the cluster's working nodes, run nodetool ring to retrieve the list of the repaired node's
tokens:

$ nodetool ring | grep ip_address_of_node | awk ' {print $NF ","}' | xargs
b) Copy the output of the nodetool ring into a spreadsheet (space-delimited).
c) Edit the output, keeping the list of tokens and deleting the other columns.
d) On the node with the new disk, open the cassandra.yaml file and add the tokens (as a comma-

separated list) to the initial_token property.
e) Change any other non-default settings in the new nodes to match the existing nodes. Use the diff

command to find and merge any differences between the nodes.

If the repair succeeds, the node is restored to production. If not, replace the node.
f) On the affected node, clear the system directory on each functioning drive.

Example for a node with a three disk JBOD array:

$ -/mnt1/cassandra/data
$ -/mnt2/cassandra/data
$ -/mnt3/cassandra/data

If mnt1 has failed:

$ rm -fr /mnt2/cassandra/data/system
$ rm -fr /mnt3/cassandra/data/system

g) Restart Cassandra without bootstrapping as described in 4 on page 156:

$ -Dcassandra.allow_unsafe_replace=true
h) Run nodetool repair on the node.

If the repair succeeds, the node is restored to production. If not, replace the node.

Operations

158

Repairing nodes
Node repair topics.

Over time, data in a replica can become inconsistent with other replicas due to the distributed nature of the
database. Node repair corrects the inconsistencies so that eventually all nodes have the same and most
up-to-date data. It is important part of regular maintenance for every Cassandra cluster.

Cassandra provides the following repair processes:

• Hinted Handoff

If a node becomes unable to receive a particular write, the write's coordinator node preserves the data
to be written as a set of hints. When the node comes back online, the coordinator effects repair by
handing off hints so that the node can catch up with the required writes.

• Read Repair

During the read path, a query assembles data from several nodes. The coordinator node for this write
compares the data from each replica node. If any replica node has outdated data, the coordinator node
sends it the most recent version. The scope of this type of repair depends on the keyspace's replication
factor. During a write, Cassandra collects only enough replica data to satisfy the replication factor, and
only performs read repair on nodes that participate in that write operation.

But Cassandra can also choose a write at random and perform read repair on all replicas, regardless of
the replication factor.

• Anti-Entropy Repair

Cassandra provides the nodetool repair tool, which you can use to repair recovering nodes, and which
you should use as part of regular maintenance purposes.

You can use Cassandra settings or Cassandra tools to configure each type of repair. For details on when
to use each type of repair and how to configure each one, see the pages listed above.

Hinted Handoff: repair during write path
Describes hinted handoff, repair during write path.

On occasion, a node becomes unresponsive while data is being written. Reasons for unresponsiveness
are hardware problems, network issues, or overloaded nodes that experience long garbage collection (GC)
pauses. By design, hinted handoff inherently allows Cassandra to continue performing the same number of
writes even when the cluster is operating at reduced capacity.

After the failure detector marks a node as down, missed writes are stored by the coordinator for a period of
time, if hinted handoff is enabled in the cassandra.yaml file. In Cassandra 3.0 and later, the hint is stored
in a local hints directory on each node for improved replay. The hint consists of a target ID for the downed
node, a hint ID that is a time UUID for the data, a message ID that identifies the Cassandra version, and
the data itself as a blob. Hints are flushed to disk every 10 seconds, reducing the staleness of the hints.
When gossip discovers when a node has comes back online, the coordinator replays each remaining hint
to write the data to the newly-returned node, then deletes the hint file. If a node is down for longer than
max_hint_window_in_ms (3 hours by default), the coordinator stops writing new hints.

The coordinator also checks every ten minutes for hints corresponding to writes that timed out during
an outage too brief for the failure detector to notice through gossip. If a replica node is overloaded or
unavailable, and the failure detector has not yet marked the node as down, then expect most or all writes
to that node to fail after the timeout triggered by write_request_timeout_in_ms, (10 seconds by default).
The coordinator returns a TimeOutException exception, and the write will fail but a hint will be stored. If
several nodes experience brief outages simultaneously, substantial memory pressure can build up on the
coordinator. The coordinator tracks how many hints it is currently writing, and if the number increases too
much, the coordinator refuses writes and throws the OverloadedException exception.

The consistency level of a write request affects whether hints are written and a write request subsequently
fails. If the cluster consists of two nodes, A and B, with a replication factor of 1, each row is stored on
only one node. Suppose node A is the coordinator, but goes down before a row K is written to it with a

/en/cassandra/2.2/cassandra/configuration/configCassandra_yaml.html#reference_ds_qfg_n1r_1k__write_request_timeout_in_ms

Operations

159

consistency level of ONE. In this case, the consistency level specified cannot be met, and since node A is
the coordinator, it cannot store a hint. Node B cannot write the data, because it has not received the data
as the coordinator nor has a hint been stored. The coordinator checks the number of replicas that are up
and will not attempt to write the hint if the consistency level specified by a client cannot be met. A hinted
handoff failure occurs and will return a UnavailableException exception. The write request fails and
the hint is not written.

In general, the recommendation is to have enough nodes in the cluster and a replication factor sufficient
to avoid write request failures. For example, consider a cluster consisting of three nodes, A, B, and C,with
a replication factor of 2. When a row K is written to the coordinator (node A in this case), even if node C
is down, the consistency level of ONE or QUORUM can be met. Why? Both nodes A and B will receive
the data, so the consistency level requirement is met. A hint is stored for node C and written when node C
comes up. In the meantime, the coordinator can acknowledge that the write succeeded.

For applications that want Cassandra to accept writes when all the normal replicas are down and
consistency level ONE cannot be satisfied, Cassandra provides consistency level ANY. ANY guarantees
that the write is durable and readable after an appropriate replica target becomes available and receives
the hint replay.

Nodes that die might have stored undelivered hints, because any node can be a coordinator. The data on
the dead node will be stale after a long outage as well. If a node has been down for an extended period of
time, a manual repair should be run.

At first glance, it seems that hinted handoff eliminates the need for manual repair, but this is not true
because hardware failure is inevitable and has the following ramifications:

Operations

160

• Loss of the historical data necessary to tell the rest of the cluster exactly what data is missing.
• Loss of hints-not-yet-replayed from requests that the failed node coordinated.

When removing a node from the cluster by decommissioning the node or by using the nodetool
removenode command, Cassandra automatically removes hints targeting the node that no longer exists.
Cassandra also removes hints for dropped tables.

For more explanation about hint storage, see What's Coming to Cassandra in 3.0: Improved Hint Storage
and Delivery or an older blog that discusses the basics, Modern hinted handoff.

Read Repair: repair during read path
Describes read repair, repair during read path.

Read repair improves consistency in a Cassandra cluster with every read request.

In a read, the coordinator node sends a data request to one replica node and digest requests to others
for consistency level (CL) greater than 1). If all nodes return consistent data, the coordinator returns it to
the client. For a description of how Cassandra handles inconsistency among replicas, see How are read
requests accomplished? on page 48.

In read repair, Cassandra sends a digest request to each replica not directly involved in the read.
Cassandra compares all replicas and writes the most recent version to any replica node that does not have
it. If the query's consistency level is above ONE, Cassandra performs this process on all replica nodes in
the foreground before the data is returned to the client. Read repair fixes anything it touches. This means
that for CL ONE, nothing is fixed because no comparison takes place. For QUORUM, only the nodes that
the query touches are repaired, not ALL.

Cassandra can also perform read repair randomly on a table, independent of any read. You can configure
how often this happens using the read_repair_chance property for a table.

Read repair cannot be performed on tables that use DateTieredCompactionStrategy, because of the way
timestamps are checked for DTCS compaction. If your table uses DateTieredCompactionStrategy, set
read_repair_chance to zero. For other compaction strategies, read_repair_chance is typically set
to a value of 0.2.

Manual repair: Anti-entropy repair
Describe how manual repair works.

Anti-entropy node repairs are important for every Cassandra cluster. Frequent data deletions and downed
nodes are common causes of data inconsistency. Use anti-entropy repair for routine maintenance and
when a cluster needs fixing by running the nodetool repair command.

How does anti-entropy repair work?
Cassandra accomplishes anti-entropy repair using Merkle trees, similar to Dynamo and Riak. Anti-
entropy is a process of comparing the data of all replicas and updating each replica to the newest version.
Cassandra has two phases to the process:

1. Build a Merkle tree for each replica
2. Compare the Merkle trees to discover differences

Merkle trees are binary hash trees whose leaves are hashes of the individual key values. The leaf of
a Cassandra Merkle tree is the hash of a row value. Each Parent node higher in the tree is a hash of
its respective children. Because higher nodes in the Merkle tree represent data further down the tree,
Casandra can check each branch independently without requiring the coordinator node to download the
entire data set. For anti-entropy repair Cassandra uses a compact tree version with a depth of 15 (2^15 =
32K leaf nodes). For example, a node containing a million partitions with one damaged partition, about 30
partitions are streamed, which is the number that fall into each of the leaves of the tree. Cassandra works
with smaller Merkle trees because they require less storage memory and can be transferred more quickly
to other nodes during the comparison process.

/en/cassandra/2.2/cassandra/tools/toolsRemoveNode.html
/en/cassandra/2.2/cassandra/tools/toolsRemoveNode.html
http://www.datastax.com/dev/blog/whats-coming-to-cassandra-in-3-0-improved-hint-storage-and-delivery
http://www.datastax.com/dev/blog/whats-coming-to-cassandra-in-3-0-improved-hint-storage-and-delivery
http://www.datastax.com/dev/blog/modern-hinted-handoff
/en/cql/3.3/cql/cql_reference/tabProp.html
/en/glossary/doc/glossary/gloss_anti_entropy.html

Operations

161

128
hash:

[M9S1..]

64
hash:

[93S2..]

192
hash:
[I9J2..]

32
hash:

[2C59..]

96
hash:

[22EB..]

(0-32)

hash:
[8DC0…]

(32-64)

hash:
[]

160
hash:

[9QW4..]

224
hash:

[]

(64-96)

hash:
[5D1B…]

(96-128)

hash:
[]

(128-160)

hash:
[3P5U…]

(160-192)

hash:
[2G8X…]

(192-224)

hash:
[]

(224-256)

hash:
[]

Row key: jack

Row token: 5

hash: 8DC0….

Row key: jill

Row token: 7

hash: 5D1B…

Row key: terry

Row token: 10

hash: 3P5U…

Row key: misty

Row token: 20

hash: @G8X…

After the initiating node receives the Merkle trees from the participating peer nodes, the initiating node
compares every tree to every other tree. If a difference is detected, the differing nodes exchange data for
the conflicting range(s), and the new data is written to SSTables. The comparison begins with the top node
of the Merkle tree. If no difference is detected, the process proceeds to the left child node and compares
and then the right child node. When a node is found to differ, inconsistent data exists for the range that
pertains to that node. All data that corresponds to the leaves below that Merkle tree node will be replaced
with new data. For any given replica set, Cassandra performs validation compaction on only one replica at
a time.

Merkle tree building is quite resource intensive, stressing disk I/O and using memory. Some of the options
discussed here help lessen the impact on the cluster performance.

The nodetool repair command can be run on either a specified node or on all nodes if a node is
not specified. The node that initiates the repair becomes the coordinator node for the operation. To build
the Merkle trees, the coordinator node determines peer nodes with matching ranges of data. A major, or
validation, compaction is triggered on the peer nodes. The validation compaction reads and generates a
hash for every row in the stored column families, adds the result to a Merkle tree, and returns the tree to
the initiating node. Merkle trees use hashes of the data, because in general, hashes will be smaller than
the data itself. Repair in Cassandra discusses this process in more detail.

Full vs Incremental repair
Th section above describes a full repair of a node's data: Cassandra compares all SSTables for that node
and makes necessary repairs. The default setting is incremental repair. An incremental repair persists data
that has already been repaired, and only builds Merkle trees for unrepaired SSTables. This more efficient
process depends on new metadata that marks the rows in an SSTable as repaired or unrepaired.

http://www.datastax.com/dev/blog/repair-in-cassandra

Operations

162

Reducing the size of the Merkle tree improves the performance of the incremental repair process,
assuming repairs are run frequently. Incremental repairs work like full repairs, with an initiating node
requesting Merkle trees from peer nodes with the same unrepaired data, and then comparing the Merkle
trees to discover mismatches. Once the data has been reconciled and new SSTables built, the initiating
node issues an anti-compaction command. Anti-compaction is the process of segregating repaired and
unrepaired ranges into separate SSTables, unless the SSTable fits entirely within the repaired range. In
the latter case, the SSTable metadata repairedAt is updated to reflect its repaired status.

Anti-compaction is handled differently, depending on the compaction strategy assigned to the data.

• Size-tiered compaction (STCS) splits repaired and unrepaired data into separate pools for separate
compactions. A major compaction generates two SSTables, one for each pool of data.

• Leveled compaction (LCS) performs size-tiered compaction on unrepaired data. After repair completes,
Casandra moves data from the set of unrepaired SSTables to L0.

• Date-tiered (DTCS) splits repaired and unrepaired data into separate pools for separate compactions.
A major compaction generates two SSTables, one for each pool of data. DTCS compaction should not
use incremental repair.

Full repair is the default in Cassandra 2.1 and earlier. Incremental repair is the default for Cassandra 2.2
and later. In Cassandra 2.2 and later, when a full repair is run, SSTables are marked as repaired and anti-
compacted.

Parallel vs Sequential repair
Sequential repair takes action on one node after another. Parallel repair repairs all nodes with the same
replica data at the same time.

Operations

163

Sequential repair takes a snapshot of each replica. Snapshots are hardlinks to existing SSTables. They
are immutable and require almost no disk space. The snapshots are active while the repair proceeds,
then Cassandra deletes them. When the coordinator node finds discrepancies in the Merkle trees, the
coordinator node makes required repairs from the snapshots. For example, for a table in a keyspace with a
Replication factor RF=3 and replicas A, B and C, the repair command takes a snapshot of each replica
immediately and then repairs each replica from the snapshots sequentially (using snapshot A to repair
replica B, then snapshot A to repair replica C, then snapshot B to repair replica C).

Parallel repair works on nodes A, B, and C all at once. During parallel repair, the dynamic snitch processes
queries for this table using a replica in the snapshot that is not undergoing repair.

Sequential repair is the default in Cassandra 2.1 and earlier. Parallel repair is the default for Cassandra 2.2
and later.

Note: Sequential and incremental do not work together in Cassandra 2.1.

Partitioner range (-pr)
Within a cluster, Cassandra stores a particular range of data on multiple nodes. If you run nodetool
repair on one node at a time, Cassandra may repair the same range of data several times (depending
on the replication factor used in the keyspace). If you use the partitioner range option (-pr), nodetool
repair only repairs a specified range of data once, rather than repeating the repair operation. This
decreases the strain on network resources, although nodetool repair still builds Merkle trees for each
replica.

Note: If you use this option, you must run nodetool repair -pr on every node in the cluster to repair
all data. Otherwise, some ranges of data will not be repaired.

The partitioner range option is recommended for routine maintenance. Do not use it to repair a downed
node. Do not use with incremental repair (default for Cassandra 3.0 and later).

Local (-local, --in-local-dc) vs datacenter (dc, --in-dc) vs Cluster-
wide repair
Consider carefully before using nodetool repair across datacenters, instead of within a local
datacenter. When you run repair locally on a node using -local or --in-local-dc, the command runs
only on nodes within the same datacenter as the node that runs it. Otherwise, the command runs cluster-
wide repair processes on all nodes that contain replicas, even those in different datacenters. For example,
if you start nodetool repair over two datacenters, DC1 and DC2, each with a replication factor of 3,
repairmust build Merkle tables for 6 nodes. The number of Merkle Tree increases linearly for additional
datacenters. Cluster-wide repair also increases network traffic between datacenters tremendously, and can
cause cluster issues.

If the local option is too limited, consider using the -dc or --in-dc options, limiting repairs to a specific
datacenter. This does not repair replicas on nodes in other datacenters, but it can decrease network traffic
while repairing more nodes than the local options.

The nodetool repair -pr option is good for repairs across multiple datacenters.

Additional notes for -local repairs:

• The nodetool repair tool does not support the use of -local with the -pr option unless the
datacenter's nodes have all the data for all ranges.

• Also, the tool does not support the use of -local with -inc (incremental repair).

Note: For Cassandra 2.2 and later, a recommended option for repairs across datacenters: use the -
dcpar or --dc-parallel to repair datacenters in parallel.

http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

Operations

164

Endpoint range vs Subrange repair (-st, --start-token, -et --end-
token)
A repair operation runs on all partition ranges on a node, or endpoint range, unless you use the -st and -
et (or -start-token and -end-token) options to run subrange repairs. When you specify a start token
and end token, nodetool repair works between these tokens, repairing only those partition ranges.

Subrange repair is not a good strategy because it requires generated token ranges. However, if you know
which partition has an error, you can target that partition range precisely for repair. This approach can
relieve the problem known as overstreaming, which ties up resources by sending repairs to a range over
and over.

Subrange repair involves more than just the nodetool repair command. A Java describe_splits
call to ask for a split containing 32k partitions can be iterated throughout the entire range incrementally or
in parallel to eliminate the overstreaming behavior. Once the tokens are generated for the split, they are
passed to nodetool repair -st <start_token> -et <end_token>. The -local option can be
used to repair only within a local data center to reduce cross data center transfer.

When to run anti-entropy repair
When should anti-entropy repair be run on nodes.

When to run anti-entropy repair is dependent on the characteristics of a Cassandra cluster. General
guidelines are presented here, and should be tailored to each particular case.

When is repair needed?
Run repair in these situations:

• To routinely maintain node health.

Note: Even if deletions never occur, schedule regular repairs. Setting a column to null is a delete.
• To recover a node after a failure while bringing it back into the cluster.
• To update data on a node containing data that is not read frequently, and therefore does not get read

repair.
• To update data on a node that has been down.
• To recover missing data or corrupted SSTables. To do this, you must run non-incremental repair.

Guidelines for running routine node repair include:

• Run incremental repair daily, run full repairs weekly to monthly. Monthly is generally sufficient, but run
more frequently if warranted.

Important: Full repair is useful for maintaining data integrity, even if deletions never occur.
• Use the parallel and partitioner range options, unless precluded by the scope of the repair.
• Run a full repair to eliminate anti-compaction. Anti-compaction is the process of splitting an SSTable

into two SSTables, one with repaired data and one with non-repaired data. This has compaction
strategy implications.

Note: Before you can run incremental repair, you must set the repaired state of each SSTable. For
instructions, see Migrating to incremental repairs.

• Run repair frequently enough that every node is repaired before reaching the time specified in the
gc_grace_seconds setting. Deleted data is properly handled in the cluster if this requirement is met.

• Schedule routine node repair to minimize cluster disruption.

• If possible, schedule repair operation for low-usage hours.
• If possible, schedule repair operations on single nodes at a time.

• Increase the time value setting of gc_grace_seconds if data is seldom deleted or overwritten. For these
tables, changing the setting will:

• Minimizes impact to disk space.
• Allow longer interval between repair operations.

http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1
http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1
/en/cql/3.3/cql/cql_reference/tabProp.html

Operations

165

• Mitigate heavy disk usage by configuring nodetool compaction throttling options
(setcompactionthroughput and setcompactionthreshold) before running a repair.

Guidelines for running repair on a downed node:

• Do not use partitioner range, -pr.

Migrating to incremental repairs
To start using incremental repairs, migrate the SSTables on each node.

Repairing SSTables using anti-entropy repairis a necessary part of Cassandra maintenance. A full repair
of all SSTables on a node takes a lot of time and is resource-intensive. You can manage repairs with less
service disruption using incremental repair. Incremental repair consumes less time and resources because
it skips SSTables that are already marked as repaired.

Incremental repair works equally well with any compaction scheme — Size-Tiered Compaction (STCS),
Date-Tiered Compaction(DTCS), Time-Window Compaction(TWCS), or Leveled Compaction (LCS).

In Cassandra 3.0 and later, switching from full repair to incremental repair is easier than before. However,
the first system-wide incremental repair can take a long time, as Cassandra recompacts all SSTables
according to the chosen compaction shceme. You can make this process less disruptive by migrating the
cluster to incremental repair one node at a time.

Overview of the procedure

To migrate one Cassandra node to incremental repair:

1. Disable autocompaction on the node.
2. Run a full, sequential repair.
3. Stop the node.
4. Set the repairedAt metadata value to each SSTable that existed before you disabled compaction.
5. Restart Cassandra on the node.
6. Re-enable autocompaction on the node.

Prerequisites
Listing SSTables

Before you run a full repair on the node, list its SSTables. The existing SSTables may not be changed
by the repair process, and the incremental repair process you run later will not process these SSTables
unless you set the repairedAt value for each SSTable (see Step 4 below).

You can find the node's SSTables in one of the following locations:

This directory contains a subdirectory for each keyspace. Each of these subdirectories contains a set of
files for each SSTable. The name of the file that contains the SSTable data has the following format:

<version_code>-<generation>-<format>-Data.db

Note: You can mark multiple SSTables as a batch by running sstablerepairedset with a text file of
filenames — see Step 4.

Migrating the node to incremental repair
Note: In RHEL and Debianß installations, you must install the tools packages before you can follow these
steps.

1. Disable autocompaction on the node

Operations

166

From the install_directory:

$ bin/nodetool disableautocompaction

Running this command without parameters disables autocompaction for all keyspaces. For details, see
disableautocompaction.

2. Run the default full, sequential repair

From the install_directory:

$ bin/nodetool repair

Running this command without parameters starts a full sequential repair of all SSTables on the node.
This may take a substantial amount of time. For details, see repair.

3. Stop the node.
4. Set the repairedAt metadata value to each SSTable that existed before you disabled

compaction.

Use sstablerepairedset on page 280. To mark a single SSTable SSTable-example-Data.db:

sudo bin/sstablerepairedset --really-set --is-repaired SSTable-example-
Data.db

To do this as a batch process using a text file of SSTable names:

sudo bin/sstablerepairedset --really-set --is-repaired -f SSTable-
names.txt

Note: The value of the repairedAt metadata is the timestamp of the last repair. The
sstablerepairedset command applies the current date/time. To check the value of the
repairedAt metadata for an SSTable, use:

$ bin/sstablemetadata example-keyspace-SSTable-example-Data.db | grep
 "Repaired at"

5. Restart the node.

What to do next
After you have migrated all nodes, you will be able to run incremental repairs using nodetool repair
with the -inc parameter. For details, see http://www.datastax.com/dev/blog/more-efficient-repairs.

Related information
http://www.datastax.com/dev/blog/repair-in-cassandra
http://www.datastax.com/dev/blog/more-efficient-repairs
http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1

Monitoring Cassandra
Monitoring topics.

Monitoring a Cassandra cluster
Understanding the performance characteristics of a Cassandra cluster is critical to diagnosing issues and planning capacity.

Understanding the performance characteristics of a Cassandra cluster is critical to diagnosing issues and
planning capacity.

http://www.datastax.com/dev/blog/more-efficient-repairs
http://www.datastax.com/dev/blog/repair-in-cassandra
http://www.datastax.com/dev/blog/more-efficient-repairs
http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1

Operations

167

Cassandra exposes a number of statistics and management operations via Java Management Extensions
(JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be
monitored or manipulated using JMX.

JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be
monitored or manipulated using JMX.

During normal operation, Cassandra outputs information and statistics that you can monitor using JMX-
compliant tools, such as:

• The Cassandra nodetool utility
• JConsole

Using the same tools, you can perform certain administrative commands and operations such as flushing
caches or doing a node repair.

Monitoring using the nodetool utility
The nodetool utility is a command-line interface for monitoring Cassandra and performing routine database
operations. It is typically run from an operational Cassandra node.

The nodetool utility supports the most important JMX metrics and operations, and includes other useful
commands for Cassandra administration, such as the proxyhistogram command. This example shows the
output from nodetool proxyhistograms after running 4,500 insert statements and 45,000 select statements
on a three ccm node-cluster on a local computer.

$ nodetool proxyhistograms

proxy histograms
Percentile Read Latency Write Latency Range Latency
 (micros) (micros) (micros)
50% 1502.50 375.00 446.00
75% 1714.75 420.00 498.00
95% 31210.25 507.00 800.20
98% 36365.00 577.36 948.40
99% 36365.00 740.60 1024.39
Min 616.00 230.00 311.00
Max 36365.00 55726.00 59247.00

For a summary of the ring and its current state of general health, use the status command. For example:

$ nodetool status

Note: Ownership information does not include topology; for complete
 information, specify a keyspace
Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.1 47.66 KB 1 33.3% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1
UN 127.0.0.2 47.67 KB 1 33.3% 1848c369-4306-4874-
afdf-5c1e95b8732e rack1
UN 127.0.0.3 47.67 KB 1 33.3% 49578bf1-728f-438d-b1c1-
d8dd644b6f7f rack1

The nodetool utility provides commands for viewing detailed metrics for tables, server metrics, and
compaction statistics:

/en/glossary/doc/glossary/gloss_node_repair.html
https://github.com/pcmanus/ccm

Operations

168

• nodetool tablestats displays statistics for each table and keyspace.
• nodetool tablehistograms provides statistics about a table, including read/write latency, row size,

column count, and number of SSTables.
• nodetool netstats provides statistics about network operations and connections.
• nodetool tpstats provides statistics about the number of active, pending, and completed tasks for

each stage of Cassandra operations by thread pool.

Monitoring using JConsole
JConsole is a JMX-compliant tool for monitoring Java applications such as Cassandra. It is included with
Sun JDK 5.0 and higher. JConsole consumes the JMX metrics and operations exposed by Cassandra and
displays them in a well-organized GUI. For each node monitored, JConsole provides these six separate tab
views:

• Overview

Displays overview information about the Java VM and monitored values.
• Memory

Displays information about memory use.
• Threads

Displays information about thread use.
• Classes

Displays information about class loading.
• VM Summary

Displays information about the Java Virtual Machine (VM).
• Mbeans

Displays information about MBeans.

The Overview and Memory tabs contain information that is very useful for Cassandra developers.
The Memory tab allows you to compare heap and non-heap memory usage, and provides a control to
immediately perform Java garbage collection.

For specific Cassandra metrics and operations, the most important area of JConsole is the MBeans tab.
This tab lists the following Cassandra MBeans:

• org.apache.cassandra.auth

Includes permissions cache.
• org.apache.cassandra.db

Includes caching, table metrics, and compaction.
• org.apache.cassandra.internal

Internal server operations such as gossip, hinted handoff, and Memtable values.
• org.apache.cassandra.metrics

Includes metrics on CQL, clients, keyspaces, read repair, storage, and threadpools and other topics.
• org.apache.cassandra.net

Inter-node communication including FailureDetector, MessagingService and StreamingManager.
• org.apache.cassandra.request

Tasks related to read, write, and replication operations.
• org.apache.cassandra.service

Includes GCInspector.

When you select an MBean in the tree, its MBeanInfo and MBean Descriptor are displayed on the right,
and any attributes, operations or notifications appear in the tree below it. For example, selecting and

Operations

169

expanding the org.apache.cassandra.db MBean to view available actions for a table results in a display like
the following:

If you choose to monitor Cassandra using JConsole, keep in mind that JConsole consumes a significant
amount of system resources. For this reason, DataStax recommends running JConsole on a remote
machine rather than on the same host as a Cassandra node.

The JConsole CompactionManagerMBean exposes compaction metrics that can indicate when you need
to add capacity to your cluster.

Compaction metrics
Monitoring compaction performance is an important aspect of knowing when to add capacity to your cluster.

Monitoring compaction performance is an important aspect of knowing when to add capacity to your
cluster. The following attributes are exposed through CompactionManagerMBean:

Table: Compaction Metrics

Attribute Description

BytesCompacted Total number of bytes compacted since server [re]start

CompletedTasks Number of completed compactions since server [re]start

PendingTasks Estimated number of compactions remaining to perform

TotalCompactionsCompletedTotal number of compactions since server [re]start

Thread pool and read/write latency statistics
Increases in pending tasks on thread pool statistics can indicate when to add additional capacity.

Cassandra maintains distinct thread pools for different stages of execution. Each of the thread pools
provide statistics on the number of tasks that are active, pending, and completed. Trends on these pools
for increases in the pending tasks column indicate when to add additional capacity. After a baseline is
established, configure alarms for any increases above normal in the pending tasks column. Use nodetool
tpstats on the command line to view the thread pool details shown in the following table.

Operations

170

Table: Thread Pool statistics reported by nodetool tpstats

Thread Pool Description

AntiEntropyStage Tasks related to repair

CacheCleanupExecutor Tasks related to cache maintenance (counter cache, row cache)

CompactionExecutor Tasks related to compaction

CounterMutationStage Tasks related to leading counter writes

GossipStage Tasks related to the gossip protocol

HintsDispatcher Tasks related to sending hints

InternalResponseStage Tasks related to miscellaneous internal task responses

MemtableFlushWriter Tasks related to flushing memtables

MemtablePostFlush Tasks related to maintenance after memtable flush completion

MemtableReclaimMemory Tasks related to reclaiming memtable memory

MigrationStage Tasks related to schema maintenance

MiscStage Tasks related to miscellaneous tasks, including snapshots and removing hosts

MutationStage Tasks related to writes

Native-Transport-
Requests

Tasks related to client requests from CQL

PendingRangeCalculator Tasks related to recalculating range ownership after bootstraps/
decommissions

PerDiskMemtableFlushWriter_*Tasks related to flushing memtables to a given disk

ReadRepairStage Tasks related to performing read repairs

ReadStage Tasks related to reads

RequestResponseStage Tasks for callbacks from intra-node requests

Sampler Tasks related to sampling statistics

SecondaryIndexManagementTasks related to secondary index maintenance

ValidationExecutor Tasks related to validation compactions

ViewMutationStage Tasks related to maintaining materialized views

Read/Write latency metrics
Cassandra tracks latency (averages and totals) of read, write, and slicing operations at the server level
through StorageProxyMBean.

Table statistics
Compaction metrics provide a number of statistics that are important for monitoring performance trends.

For individual tables, ColumnFamilyStoreMBean provides the same general latency attributes as
StorageProxyMBean. Unlike StorageProxyMBean, ColumnFamilyStoreMBean has a number of other
statistics that are important to monitor for performance trends. The most important of these are:

Operations

171

Table: Table Statistics

Attribute Description

MemtableDataSize The total size consumed by this table's data (not including metadata).

MemtableColumnsCount Returns the total number of columns present in the memtable (across
all keys).

MemtableSwitchCount How many times the memtable has been flushed out.

RecentReadLatencyMicros The average read latency since the last call to this bean.

RecentWriterLatencyMicros The average write latency since the last call to this bean.

LiveSSTableCount The number of live SSTables for this table.

The recent read latency and write latency counters are important in making sure operations are happening
in a consistent manner. If these counters start to increase after a period of staying flat, you probably need
to add capacity to the cluster.

You can set a threshold and monitor LiveSSTableCount to ensure that the number of SSTables for a given
table does not become too great.

Tuning Java resources
Tuning the Java Virtual Machine (JVM) can improve performance or reduce high memory consumption.

Tuning the Java Virtual Machine (JVM) can improve performance or reduce high memory consumption.

Topics in this page:

• About garbage collection on page 171
• Choosing a Java garbage collector on page 171
• Setting G1 as the Java garbage collector on page 172
• Determining the heap size on page 172
• How Cassandra uses memory on page 173 - Read first for a better understanding of the settings and

recommendations in this topic.
• Adjusting JVM parameters for other Cassandra services on page 174
• Other JMX options on page 174

About garbage collection
Garbage collection is the process by which Java removes data that is no longer needed from memory. To
achieve the best performance, it is important to select the right garbage collector and heap size settings.

One situation that you definitely want to minimize is a garbage collection pause, also known as a stop-
the-world event. A pause occurs when a region of memory is full and the JVM needs to make space to
continue. During a pause all operations are suspended. Because a pause affects networking, the node
can appear as down to other nodes in the cluster. Additionally, any Select and Insert statements will wait,
which increases read and write latencies. Any pause of more than a second, or multiple pauses within a
second that add to a large fraction of that second, should be avoided. The basic cause of the problem is
the rate of data stored in memory outpaces the rate at which data can be removed. For specific symptoms
and causes, see Garbage collection pauses.

Choosing a Java garbage collector
For Cassandra 3.0 and later, using the Concurrent-Mark-Sweep (CMS) or G1 garbage collector depends
on these factors:

G1 is recommended in the following circumstances and reasons:

/en/glossary/doc/glossary/gloss_memtable.html
/en/glossary/doc/glossary/gloss_sstable.html
/en/landing_page/doc/landing_page/troubleshooting/cassandra/cassandra/gcPauses.html

Operations

172

• Heap sizes from 14 GB to 64 GB.

G1 performs better than CMS for larger heaps because it scans the regions of the heap containing the
most garbage objects first, and compacts the heap on-the-go, while CMS stops the application when
performing garbage collection.

• The workload is variable, that is, the cluster is performing the different processes all the time.
• For future proofing, as CMS will be deprecated in Java 9.
• G1 is easier to configure.
• G1 is self tuning.

CMS is recommended in the following circumstances:

• You have the time and expertise to manually tune and test garbage collection.

Be aware that allocating more memory to the heap, can result in diminishing performance as the
garbage collection facility increases the amount of Cassandra metadata in heap memory.

• Heap sizes no larger than 14 GB.
• The workload is fixed, that is, the cluster performs the same processes all the time.
• The environment requires the lowest latency possible. G1 incurs some latency due to profiling.

Note: For help configuring CMS, contact the DataStax Services team.

Setting G1 as the Java garbage collector
1. Open jvm.options.
2. Comment out the -Xmn800M line.
3. Comment out all lines in the ### CMS Settings section.
4. Uncomment the relevant G1 settings in the ### G1 Settings section:

Use the Hotspot garbage-first collector.
-XX:+UseG1GC
#
Have the JVM do less remembered set work during STW, instead
preferring concurrent GC. Reduces p99.9 latency.
#-XX:G1RSetUpdatingPauseTimePercent=5

Note: When using G1, you only need to set MAX_HEAP_SIZE.

Determining the heap size
You might be tempted to set the Java heap to consume the majority of the computer's RAM. However, this
can interfere with the operation of the OS page cache. Recent operating systems maintain the OS page
cache for frequently accessed data and are very good at keeping this data in memory. Properly tuning the
OS page cache usually results in better performance than increasing the Cassandra row cache.

Cassandra automatically calculates the maximum heap size (MAX_HEAP_SIZE) based on this formula:

max(min(1/2 ram, 1024MB), min(1/4 ram, 8GB)

For production use, you may wish to adjust heap size for your environment using the following guidelines:

• Heap size is usually between ¼ and ½ of system memory.
• Do not devote all memory to heap because it is also used for offheap cache and file system cache.
• Always enable GC logging when adjusting GC.
• Adjust settings gradually and test each incremental change.
• Enable parallel processing for GC, particularly when using DSE Search.
• Cassandra's GCInspector class logs information about any garbage collection that takes longer

than 200 ms. Garbage collections that occur frequently and take a moderate length of time (seconds)

http://www.datastax.com/products/services

Operations

173

to complete, indicate excessive garbage collection pressure on the JVM. In addition to adjusting the
garbage collection options, other remedies include adding nodes, and lowering cache sizes.

• For a node using G1, the Cassandra community recommends a MAX_HEAP_SIZE as large as
possible, up to 64 GB.

Note: For more tuning tips, see Secret HotSpot option improving GC pauses on large heaps.

MAX_HEAP_SIZE

The recommended maximum heap size depends on which GC is used:

Hardware setup Recommended MAX_HEAP_SIZE

Older computers Typically 8 GB.

CMS for newer computers (8+ cores) with up to 256
GB RAM

No more 14 GB.

G1 for newer computers (8+ cores) with up to 256
GB RAM

14 GB to 64 GB.

The easiest way to determine the optimum heap size for your environment is:

1. Set the maximum heap size in the jvm.options file to a high arbitrary value on a single node. For
example:

-Xms48G
-Xmx48G

Set the min (-Xms) and max (-Xmx) heap sizes to the same value to avoid stop-the-world GC pauses
during resize, and to lock the heap in memory on startup which prevents any of it from being swapped
out.

2. Enable GC logging.
3. Check the logs to view the heap used by that node and use that value for setting the heap size in the

cluster:

Note: This method decreases performance for the test node, but generally does not significantly reduce
cluster performance.

If you don't see improved performance, contact the DataStax Services team for additional help.

HEAP_NEWSIZE

For CMS, you may also need to adjust HEAP_NEWSIZE. This setting determines the amount of heap
memory allocated to newer objects or young generation. Cassandra calculates the default value for this
property (in MB) as the lesser of:

• 100 times the number of cores
• ¼ of MAX_HEAP_SIZE

As a starting point, set HEAP_NEWSIZE to 100 MB per physical CPU core. For example, for a modern 8-
core+ machine:

-Xmn800M

A larger HEAP_NEWSIZE leads to longer GC pause times. For a smaller HEAP_NEWSIZE, GC pauses
are shorter but usually more expensive.

How Cassandra uses memory
Cassandra performs the following major operations within JVM heap:

• To perform reads, Cassandra maintains the following components in heap memory:

http://blog.ragozin.info/2012/03/secret-hotspot-option-improving-gc.html
http://www.datastax.com/products/services

Operations

174

• Bloom filters
• Partition summary
• Partition key cache
• Compression offsets
• SSTable index summary

This metadata resides in memory and is proportional to total data. Some of the components grow
proportionally to the size of total memory.

• Cassandra gathers replicas for a read or for anti-entropy repair and compares the replicas in heap
memory.

• Data written to Cassandra is first stored in memtables in heap memory. Memtables are flushed to
SSTables on disk.

To improve performance, Cassandra also uses off-heap memory as follows:

• Page cache. Cassandra uses additional memory as page cache when reading files on disk.
• The Bloom filter and compression offset maps reside off-heap.
• Cassandra can store cached rows in native memory, outside the Java heap. This reduces JVM

heap requirements, which helps keep the heap size in the sweet spot for JVM garbage collection
performance.

Adjusting JVM parameters for other Cassandra services
• Solr: Some Solr users have reported that increasing the stack size improves performance under

Tomcat.

To increase the stack size, uncomment and modify the default setting in the cassandra-env.sh file.

Per-thread stack size.
JVM_OPTS="$JVM_OPTS -Xss256k"

Also, decreasing the memtable space to make room for Solr caches can improve
performance. Modify the memtable space by changing the memtable_heap_space_in_mb and
memtable_offheap_space_in_mb properties in the cassandra.yaml file.

• MapReduce: Because MapReduce runs outside the JVM, changes to the JVM do not affect Analytics/
Hadoop operations directly.

Other JMX options
Cassandra exposes other statistics and management operations via Java Management Extensions (JMX).
JConsole and the nodetool utility are JMX-compliant management tools.

Configure Cassandra for JMX management by editing these properties in cassandra-env.sh.

• com.sun.management.jmxremote.port: sets the port on which Cassandra listens from JMX
connections.

• com.sun.management.jmxremote.ssl: enables or disables SSL for JMX.
• com.sun.management.jmxremote.authenticate: enables or disables remote authentication for

JMX.
• -Djava.rmi.server.hostname: sets the interface hostname or IP that JMX should use to connect.

Uncomment and set if you are having trouble connecting.

Note: By default, you can interact with Cassandra using JMX on port 7199 without authentication.

Data caching
Data caching topics.

Operations

175

Configuring data caches
Cassandra includes integrated caching and distributes cache data around the cluster. The integrated architecture facilitates troubleshooting and the cold start problem.

Cassandra includes integrated caching and distributes cache data around the cluster. When a node
goes down, the client can read from another cached replica of the data. The integrated architecture also
facilitates troubleshooting because there is no separate caching tier, and cached data matches what is in
the database exactly. The integrated cache alleviates the cold start problem by saving the cache to disk
periodically. Cassandra reads contents back into the cache and distributes the data when it restarts. The
cluster does not start with a cold cache.

The saved key cache files include the ID of the table in the file name. A saved key cache
filename for the users table in the mykeyspace keyspace looks similar to: mykeyspace-
users.users_name_idx-19bd7f80352c11e4aa6a57448213f97f-KeyCache-
b.db2046071785672832311.tmp

About the partition key cache
The partition key cache is a cache of the partition index for a Cassandra table. Using the key cache instead
of relying on the OS page cache decreases seek times. Enabling just the key cache results in disk (or OS
page cache) activity to actually read the requested data rows, but not enabling the key cache results in
more reads from disk.

About the row cache
Note: Utilizing appropriate OS page cache will result in better performance than using row caching.
Consult resources for page caching for the operating system on which Cassandra is hosted.

Configure the number of rows to cache in a partition by setting the rows_per_partition table option. To
cache rows, if the row key is not already in the cache, Cassandra reads the first portion of the partition,
and puts the data in the cache. If the newly cached data does not include all cells configured by user,
Cassandra performs another read. The actual size of the row-cache depends on the workload. You should
properly benchmark your application to get ”the best” row cache size to configure.

There are two row cache options, the old serializing cache provider and a new off-heap cache (OHC)
provider. The new OHC provider has been benchmarked as performing about 15% better than the older
option.

Using key cache and row cache
Typically, you enable either the partition key or row cache for a table.

Tip: Enable a row cache only when the number of reads is much bigger (rule of thumb is 95%) than the
number of writes. Consider using the operating system page cache instead of the row cache, because
writes to a partition invalidate the whole partition in the cache.

Tip: Disable caching entirely for archive tables, which are infrequently read.

Enabling and configuring caching
Using CQL to enable or disable caching.

Use CQL to enable or disable caching by configuring the caching table property. Set parameters in the
cassandra.yaml file to configure global caching properties:

• Partition key cache size
• Row cache size
• How often Cassandra saves partition key caches to disk
• How often Cassandra saves row caches to disk

Configuring the row_cache_size_in_mb (in the cassandra.yaml configuration file) determines how much
space in memory Cassandra allocates to store rows from the most frequently read partitions of the table.

/en/cql/3.3/cql/cql_using/useCreateTable.html
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCaching

Operations

176

Procedure
Set the table caching property that configures the partition key cache and the row cache.

CREATE TABLE users (
 userid text PRIMARY KEY,
 first_name text,
 last_name text,
)
WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : '120' };

Tips for efficient cache use
Various tips for efficient cache use.

Tuning the row cache in Cassandra 2.1 describes best practices of using the built-in caching mechanisms
and designing an effective data model. Some tips for efficient cache use are:

• Store lower-demand data or data with extremely long partitions in a table with minimal or no caching.
• Deploy a large number of Cassandra nodes under a relatively light load per node.
• Logically separate heavily-read data into discrete tables.

When you query a table, turn on tracing to check that the table actually gets data from the cache rather
than from disk. The first time you read data from a partition, the trace shows this line below the query
because the cache has not been populated yet:

Row cache miss [ReadStage:41]

In subsequent queries for the same partition, look for a line in the trace that looks something like this:

Row cache hit [ReadStage:55]

This output means the data was found in the cache and no disk read occurred. Updates invalidate the
cache. If you query rows in the cache plus uncached rows, request more rows than the global limit allows,
or the query does not grab the beginning of the partition, the trace might include a line that looks something
like this:

Ignoring row cache as cached value could not satisfy query [ReadStage:89]

This output indicates that an insufficient cache caused a disk read. Requesting rows not at the beginning
of the partition is a likely cause. Try removing constraints that might cause the query to skip the beginning
of the partition, or place a limit on the query to prevent results from overflowing the cache. To ensure that
the query hits the cache, try increasing the cache size limit, or restructure the table to position frequently
accessed rows at the head of the partition.

Monitoring and adjusting caching
Use nodetool to make changes to cache options and then monitor the effects of each change.

Make changes to cache options in small, incremental adjustments, then monitor the effects of each change
using the nodetool utility. The output of the nodetool info command shows the following row cache and
key cache setting values, which are configured in the cassandra.yaml file:

• Cache size in bytes
• Capacity in bytes
• Number of hits
• Number of requests
• Recent hit rate
• Duration in seconds after which Cassandra saves the key cache.

http://www.datastax.com/dev/blog/row-caching-in-cassandra-2-1
/en/cql/3.3/cql/cql_reference/tracing_r.html
/en/cql/3.3/cql/cql_reference/select_r.html?#specifying-rows-returned-using-limit

Operations

177

For example, on start-up, the information from nodetool info might look something like this:

ID : 387d15ba-7103-491b-9327-1a691dbb504a
Gossip active : true
Thrift active : true
Native Transport active: true
Load : 65.87 KB
Generation No : 1400189757
Uptime (seconds) : 148760
Heap Memory (MB) : 392.82 / 1996.81
datacenter : datacenter1
Rack : rack1
Exceptions : 0
Key Cache : entries 10, size 728 (bytes), capacity 103809024 (bytes),
 93 hits, 102 requests, 0.912 recent hit rate, 14400 save period in seconds
Row Cache : entries 0, size 0 (bytes), capacity 0 (bytes), 0 hits, 0
 requests, NaN recent hit rate, 0 save period in seconds
Counter Cache : entries 0, size 0 (bytes), capacity 51380224 (bytes), 0
 hits, 0 requests, NaN recent hit rate, 7200 save period in seconds
Token : -9223372036854775808

In the event of high memory consumption, consider tuning data caches.

Configuring memtable thresholds
Configuring memtable thresholds to improve write performance.

Configuring memtable thresholds can improve write performance. Cassandra flushes memtables to disk,
creating SSTables when the commit log space threshold or the memtable cleanup threshold has been
exceeded. Configure the commit log space threshold per node in the cassandra.yaml. How you tune
memtable thresholds depends on your data and write load. Increase memtable thresholds under either of
these conditions:

• The write load includes a high volume of updates on a smaller set of data.
• A steady stream of continuous writes occurs. This action leads to more efficient compaction.

Allocating memory for memtables reduces the memory available for caching and other internal Cassandra
structures, so tune carefully and in small increments.

Configuring compaction
Steps for configuring compaction. The compaction process merges keys, combines columns, evicts tombstones, consolidates SSTables, and creates a new index in the merged SSTable.

As discussed in the Compaction on page 28 topic, the compaction process merges keys, combines
columns, evicts tombstones, consolidates SSTables, and creates a new index in the merged SSTable.

In the cassandra.yaml file, you configure these global compaction parameters:

• snapshot_before_compaction
• concurrent_compactors
• compaction_throughput_mb_per_sec

The compaction_throughput_mb_per_sec parameter is designed for use with large partitions. Cassandra
throttles compaction to this rate across the entire system.

Cassandra provides a start-up option for testing compaction strategies without affecting the production
workload.

Cassandra supports the following compaction strategies, which you can configure using CQL:

Operations

178

• SizeTieredCompactionStrategy (STCS): The default compaction strategy. This strategy triggers
a minor compaction when there are a number of similar sized SSTables on disk as configured by the
table subproperty, min_threshold. A minor compaction does not involve all the tables in a keyspace.
Also see STCS compaction subproperties.

• DateTieredCompactionStrategy (DTCS): This strategy is particularly useful for time series
data. DateTieredCompactionStrategy stores data written within a certain period of time in the same
SSTable. For example, Cassandra can store your last hour of data in one SSTable time window, and
the next 4 hours of data in another time window, and so on. Compactions are triggered when the
min_threshold (4 by default) for SSTables in those windows is reached. The most common queries for
time series workloads retrieve the last hour/day/month of data. Cassandra can limit SSTables returned
to those having the relevant data. Also, Cassandra can store data that has been set to expire using
TTL in an SSTable with other data scheduled to expire at approximately the same time. Cassandra can
then drop the SSTable without doing any compaction. Also see DTCS compaction subproperties and
DateTieredCompactionStrategy: Compaction for Time Series Data.

• TimeWindowCompactionStrategy (TWCS) This strategy is another alternative for time series
data. TWCS compacts SSTables using a series of time windows or buckets. TWCS creates a new
time window within each successive time period. During the active time window, TWCS compacts
all SSTables flushed from memory into larger SSTables using STCS. At the end of the time period,
all of these SSTables are compacted into a single SSTable. Then the next time window starts and
the process repeats. You can configure the duration of the time window. For more information about
TWCS, including an example, see How is data maintained? on page 28.

• LeveledCompactionStrategy (LCS): The leveled compaction strategy creates SSTables of a
fixed, relatively small size (160 MB by default) that are grouped into levels. Within each level, SSTables
are guaranteed to be non-overlapping. Each level (L0, L1, L2 and so on) is 10 times as large as the
previous. Disk I/O is more uniform and predictable on higher than on lower levels as SSTables are
continuously being compacted into progressively larger levels. At each level, row keys are merged into
non-overlapping SSTables in the next level. This process can improve performance for reads, because
Cassandra can determine which SSTables in each level to check for the existence of row key data.
This compaction strategy is modeled after Google's LevelDB implementation. Also see LCS compaction
subproperties.

To configure the compaction strategy property and CQL compaction subproperties, such as the maximum
number of SSTables to compact and minimum SSTable size, use CREATE TABLE or ALTER TABLE.

Procedure
1. Update a table to set the compaction strategy using the ALTER TABLE statement.

ALTER TABLE users WITH
 compaction = { 'class' : 'LeveledCompactionStrategy' }

2. Change the compaction strategy property to SizeTieredCompactionStrategy and specify the minimum
number of SSTables to trigger a compaction using the CQL min_threshold attribute.

ALTER TABLE users
 WITH compaction =
 {'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }

Results
You can monitor the results of your configuration using compaction metrics, see Compaction metrics on
page 169.

/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesSTCS
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesDTCS
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesLCS
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesLCS
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/cql/3.3/cql/cql_reference/create_table_r.html
/en/cql/3.3/cql/cql_reference/alter_table_r.html
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompaction

Operations

179

What to do next
Cassandra 3.0 and later support extended logging for Compaction. This utility must be configured as part
of the table configuration. The extended compaction logs are stored in a separate file. For details, see
Enabling extended compaction logging.

Compression
Compression maximizes the storage capacity of Cassandra nodes by reducing the volume of data on disk and disk I/O, particularly for read-dominated workloads.

Compression maximizes the storage capacity of Cassandra nodes by reducing the volume of data on
disk and disk I/O, particularly for read-dominated workloads. Cassandra quickly finds the location of
rows in the SSTable index and decompresses the relevant row chunks. Compression is important for
Cassandra 2.2, but Cassandra 3.0 and later uses a new storage engine that dramatically reduces disk
volume automatically. For information on the Cassandra 3.0 improvements, see Putting some structure in
the storage engine

Write performance is not negatively impacted by compression in Cassandra as it is in traditional
databases. In traditional relational databases, writes require overwrites to existing data files on disk. The
database has to locate the relevant pages on disk, decompress them, overwrite the relevant data, and
finally recompress. In a relational database, compression is an expensive operation in terms of CPU cycles
and disk I/O. Because Cassandra SSTable data files are immutable (they are not written to again after
they have been flushed to disk), there is no recompression cycle necessary in order to process writes.
SSTables are compressed only once when they are written to disk. Writes on compressed tables can show
up to a 10 percent performance improvement.

In Cassandra 2.2 and later, the commit log can also be compressed and write performance can be
improved 6-12%. For more information, see Updates to Cassandra’s Commit Log in 2.2.

When to compress data
Compression is best suited for tables that have many rows and each row has the same columns, or at least as many columns, as other rows.

Compression is most effective on a table with many rows, where each row contains the same set of
columns (or the same number of columns) as all other rows. For example, a table containing user data
such as username, email and state is a good candidate for compression. The greater the similarity of the
data across rows, the greater the compression ratio and gain in read performance.

A table whose rows contain differing sets of columns is not well-suited for compression.

Don't confuse table compression with compact storage of columns, which is used for backward
compatibility of old applications with CQL.

Depending on the data characteristics of the table, compressing its data can result in:

• 25-33% reduction in data size
• 25-35% performance improvement on reads
• 5-10% performance improvement on writes

After configuring compression on an existing table, subsequently created SSTables are compressed.
Existing SSTables on disk are not compressed immediately. Cassandra compresses existing SSTables
when the normal Cassandra compaction process occurs. Force existing SSTables to be rewritten and
compressed by using nodetool upgradesstables (Cassandra 1.0.4 or later) or nodetool scrub.

Configuring compression
Steps for configuring compression.

You configure a table property and subproperties to manage compression. The CQL table properties
documentation describes the types of compression options that are available. Compression is enabled by
default.

/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactSubprop__enabling-extended-compaction-logging
http://www.datastax.com/2015/12/storage-engine-30
http://www.datastax.com/2015/12/storage-engine-30
http://www.datastax.com/dev/blog/updates-to-cassandras-commit-log-in-2-2
/en/cql/3.3/cql/cql_reference/create_table_r.html
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompression
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompression

Operations

180

Procedure
1. Disable compression, using CQL to set the compression parameter enabled to false.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'enabled' : false };

2. Enable compression on an existing table, using ALTER TABLE to set the compression algorithm class
to LZ4Compressor (Cassandra 1.2.2 and later), SnappyCompressor, or DeflateCompressor.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'class' : 'LZ4Compressor' };

3. Change compression on an existing table, using ALTER TABLE and setting the compression algorithm
class to DeflateCompressor.

ALTER TABLE CatTypes
 WITH compression = { 'class' : 'DeflateCompressor',
 'chunk_length_in_kb' : 64 }

You tune data compression on a per-table basis using CQL to alter a table.

Testing compaction and compression
Enabling write survey mode.

Write survey mode is a Cassandra startup option for testing new compaction and compression strategies.
In write survey mode, you can test out new compaction and compression strategies on that node and
benchmark the write performance differences, without affecting the production cluster.

Write survey mode adds a node to a database cluster. The node accepts all write traffic as if it were part of
the normal Cassandra cluster, but the node does not officially join the ring.

Also use write survey mode to try out a new Cassandra version. The nodes you add in write survey mode
to a cluster must be of the same major release version as other nodes in the cluster. The write survey
mode relies on the streaming subsystem that transfers data between nodes in bulk and differs from one
major release to another.

If you want to see how read performance is affected by modifications, stop the node, bring it up as a
standalone machine, and then benchmark read operations on the node.

Procedure
Start the Cassandra node using the write_survey option:

• Package installations: Add the following option to cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.write_survey=true

Operations

181

• Tarball installations: Start Cassandra with this option:

$ cd install_location
$ sudo bin/cassandra -Dcassandra.write_survey=true

Tuning Bloom filters
Cassandra uses Bloom filters to determine whether an SSTable has data for a particular row.

Cassandra uses Bloom filters to determine whether an SSTable has data for a particular partition.
Bloom filters are unused for range scans, but are used for index scans. Bloom filters are probabilistic
sets that allow you to trade memory for accuracy. This means that higher Bloom filter attribute
settings bloom_filter_fp_chance use less memory, but will result in more disk I/O if the SSTables
are highly fragmented. Bloom filter settings range from 0 to 1.0 (disabled). The default value of
bloom_filter_fp_chance depends on the compaction strategy. The LeveledCompactionStrategy uses a
higher default value (0.1) than the SizeTieredCompactionStrategy or DateTieredCompactionStrategy,
which have a default of 0.01. Memory savings are nonlinear; going from 0.01 to 0.1 saves about one third
of the memory. SSTables using LCS contain a relatively smaller ranges of keys than those using STCS,
which facilitates efficient exclusion of the SSTables even without a bloom filter; however, adding a small
bloom filter helps when there are many levels in LCS.

The settings you choose depend the type of workload. For example, to run an analytics application that
heavily scans a particular table, you would want to inhibit the Bloom filter on the table by setting it high.

To view the observed Bloom filters false positive rate and the number of SSTables consulted per read use
tablestats in the nodetool utility.

Bloom filters are stored off-heap so you don't need include it when determining the -Xmx settings (the
maximum memory size that the heap can reach for the JVM).

To change the bloom filter property on a table, use CQL. For example:

ALTER TABLE addamsFamily WITH bloom_filter_fp_chance = 0.1;

After updating the value of bloom_filter_fp_chance on a table, Bloom filters need to be regenerated in one
of these ways:

• Initiate compaction
• Upgrade SSTables

You do not have to restart Cassandra after regenerating SSTables.

Moving data to or from other databases
Solutions for migrating from other databases.

Cassandra offers several solutions for migrating from other databases:

• The COPY command, which mirrors what the PostgreSQL RDBMS uses for file/export import.
• The Cassandra bulk loader provides the ability to bulk load external data into a cluster.

About the COPY command
You can use COPY in CQL shell to load flat file data into Cassandra (nearly all relational databases have
unload utilities that allow table data to be written to OS files) as well to write Cassandra data to CSV files.

ETL Tools
If you need more sophistication applied to a data movement situation (more than just extract-load), then
you can use any number of extract-transform-load (ETL) solutions that now support Cassandra. These

/en/cql/3.3/cql/cql_reference/tabProp.html#moreBloomFilter
/en/cql/3.3/cql/cql_reference/tabProp.html#moreCompaction
/en/cql/3.3/cql/cql_reference/tabProp.html#moreBloomFilter
/en/cql/3.3/cql/cql_reference/copy_r.html

Operations

182

tools provide excellent transformation routines that allow you to manipulate source data in literally any way
you need and then load it into a Cassandra target. They also supply many other features such as visual,
point-and-click interfaces, scheduling engines, and more.

Many ETL vendors who support Cassandra supply community editions of their products that are free
and able to solve many different use cases. Enterprise editions are also available that supply many other
compelling features that serious enterprise data users need.

You can freely download and try ETL tools from Jaspersoft, Pentaho, and Talend that all work with
Cassandra.

Purging gossip state on a node
Correcting a problem in the gossip state.

Gossip information is persisted locally by each node to use immediately on node restart without having to
wait for gossip communications.

Procedure
In the unlikely event you need to correct a problem in the gossip state:

1. Use the nodetool assassinate to shut down the problem node.

This takes approximately 35 seconds to complete, so wait for confirmation that the node is deleted.

2. If this method doesn't solve the problem, stop your client application from sending writes to the cluster.

3. Take the entire cluster offline:

a) Drain each node.

$ nodetool options drain
b) Stop each node:

• Package installations:

$ sudo service cassandra stop
• Tarball installations:

$ sudo service cassandra stop

4. Clear the data from the peers directory, remove all directories in the peers-UUID directory, where
UUID is the particular directory that corresponds to the appropriate node:

$ sudo rm -r /var/lib/cassandra/data/system/peers-UUID/*

CAUTION:

Use caution when performing this step. The action clears internal system data from Cassandra and
may cause application outage without careful execution and validation of the results. To validate the
results, run the following query individually on each node to confirm that all of the nodes are able to see
all other nodes.

select * from system.peers;

5. Clear the gossip state when the node starts:

• For tarball installations, you can use a command line option or edit the cassandra-env.sh. To use
the command line:

$ install_location/bin/cassandra -Dcassandra.load_ring_state=false

Cassandra tools

183

• For package installations or if you are not using the command line option above, add the following
line to the cassandra-env.sh file:

$env:JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

• Package installations: /usr/share/cassandra/cassandra-env.sh
• Tarball installations: install_location/conf/cassandra-env.sh

6. Bring the cluster online one node at a time, starting with the seed nodes.

• Package installations:

$ sudo service cassandra start
• Tarball installations:

$ cd install_location
$ bin/cassandra

What to do next
Remove the line you added in the cassandra-env.sh file.

Cassandra tools
Topics for Cassandra tools.

The nodetool utility
A list of the available commands for managing a cluster.

About the nodetool utility
A command line interface for managing a cluster.

The nodetool utility is a command line interface for managing a cluster.

Command formats

$ nodetool [options] command [args]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.

Cassandra tools

184

• The repair and rebuild commands can affect multiple nodes in the cluster.
• Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or

more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Example

$ nodetool -u cassandra -pw cassandra describering demo_keyspace

Getting nodetool help
nodetool help

Provides a listing of nodetool commands.

nodetool help command name

Provides help on a specific command. For example:

$ nodetool help upgradesstables

For more information, see nodetool help

nodetool assassinate
Forcefully removes a dead node without re-replicating any data. It is a last resort tool if you cannot successfully use nodetool removenode.

Forcefully removes a dead node without re-replicating any data. It is a last resort tool if you cannot
successfully use nodetool removenode.

Synopsis

$ nodetool [options] assassinate <ip_address>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

ip_address IP address of the endpoint to assassinate.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool assassinate operates on a single node in the cluster if -h is not used to identify one or

more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Cassandra tools

185

Description
The nodetool assassinate command is a tool of last resort. Only use this tool to remove a node from
a cluster when removenode is not successful.

Examples

$ nodetool -u cassandra -pw cassandra assassinate 192.168.100.2

nodetool bootstrap
Monitor and manage a node's bootstrap process.

Monitor and manage a node's bootstrap process.

Synopsis

$ nodetool [options] bootstrap [resume]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool bootstrap operates on a single node in the cluster if -h is not used to identify one or more

other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Description
The nodetool bootstrap command can be used to monitor and manage a node's bootstrap process.
If no argument is defined, the help information is displayed. If the argument resume is used, bootstrap
streaming is resumed.

Examples

$ nodetool -u cassandra -pw cassandra bootstrap resume

nodetool cfhistograms
This tool has been renamed.

This tool has been renamed as tablehistograms.

Cassandra tools

186

nodetool cfstats
This tool has been renamed.

This tool has been renamed as nodetool tablestats.

nodetool cleanup
Cleans up keyspaces and partition keys no longer belonging to a node.

Cleans up keyspaces and partition keys no longer belonging to a node.

Synopsis

$ nodetool <options> cleanup -- <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Keyspace name.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
Use this command to remove unwanted data after adding a new node to the cluster. Cassandra does
not automatically remove data from nodes that lose part of their partition range to a newly added node.
Run nodetool cleanup on the source node and on neighboring nodes that shared the same subrange
after the new node is up and running. Failure to run this command after adding a node causes Cassandra
to include the old data to rebalance the load on that node. Running the nodetool cleanup command
causes a temporary increase in disk space usage proportional to the size of your largest SSTable. Disk I/O
occurs when running this command.

Running this command affects nodes that use a counter column in a table. Cassandra assigns a new
counter ID to the node.

Optionally, this command takes a list of table names. If you do not specify a keyspace, this command
cleans all keyspaces no longer belonging to a node.

nodetool clearsnapshot
Removes one or more snapshots.

Removes one or more snapshots.

Synopsis

$ nodetool <options> clearsnapshot -t <snapshot> -- (<keyspace> ...)

Cassandra tools

187

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-t Remove the snapshot with a designated name.

keyspace Remove snapshots from the designated keyspaces, separated by a space.

snapshot Name of the snapshot.

-- Separates an option from an argument that could be mistaken for a option.

Description
Deletes snapshots in one or more keyspaces. To remove all snapshots, omit the snapshot name.

nodetool compact
Forces a major compaction on one or more tables.

Forces a major compaction on one or more tables.

Synopsis

$ nodetool <options> compact <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Remote JMX agent port number.

-pw --password Password.

-pwf --password-file Password file path.

-s --split-output Split output of STCS files to 50%-25%-12.5% and
so on of the total size.

-u --username Remote JMX agent user name.

--user-defined Submit listed files for user-defined compaction. For Cassandra 3.4 and later.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• No -s will create one large SSTable for STCS.
• -s will not affect DTCS; it will create one large SSTable.

/en/glossary/doc/glossary/gloss_compaction.html

Cassandra tools

188

Description
This command starts the compaction process on tables using SizeTieredCompactionStrategy (STCS),
DateTieredCompactionStrategy (DTCS), or Leveled compaction (LCS):

• If you do not specify a keyspace or table, a major compaction is run on all keyspaces and tables.
• If you specify only a keyspace, a major compaction is run on all tables in that keyspace.
• If you specify one or more tables, a major compaction is run on those tables.

Major compactions may behave differently depending which compaction strategy is used for the affected
tables:

• SizeTieredCompactionStrategy (STCS): The default compaction strategy. This strategy triggers
a minor compaction when there are a number of similar sized SSTables on disk as configured by the
table subproperty, min_threshold. A minor compaction does not involve all the tables in a keyspace.
Also see STCS compaction subproperties.

• DateTieredCompactionStrategy (DTCS): This strategy is particularly useful for time series
data. DateTieredCompactionStrategy stores data written within a certain period of time in the same
SSTable. For example, Cassandra can store your last hour of data in one SSTable time window, and
the next 4 hours of data in another time window, and so on. Compactions are triggered when the
min_threshold (4 by default) for SSTables in those windows is reached. The most common queries for
time series workloads retrieve the last hour/day/month of data. Cassandra can limit SSTables returned
to those having the relevant data. Also, Cassandra can store data that has been set to expire using
TTL in an SSTable with other data scheduled to expire at approximately the same time. Cassandra can
then drop the SSTable without doing any compaction. Also see DTCS compaction subproperties and
DateTieredCompactionStrategy: Compaction for Time Series Data.

• TimwWindowCompactionStrategy (TWCS) This strategy is another alternative for time series
data. TWCS compacts SSTables using a series of time windows or buckets. TWCS creates a new
time window within each successive time period. During the active time window, TWCS compacts
all SSTables flushed from memory into larger SSTables using STCS. At the end of the time period,
all of these SSTables are compacted into a single SSTable. Then the next time window starts and
the process repeats. You can configure the duration of the time window. For more information about
TWCS, including an example, see How is data maintained? on page 28.

• TimeWindowCompactionStrategy (TWCS) This strategy is another alternative for time series
data. TWCS compacts SSTables using a series of time windows or buckets. TWCS creates a new
time window within each successive time period. During the active time window, TWCS compacts
all SSTables flushed from memory into larger SSTables using STCS. At the end of the time period,
all of these SSTables are compacted into a single SSTable. Then the next time window starts and
the process repeats. You can configure the duration of the time window. For more information about
TWCS, including an example, see How is data maintained? on page 28.

• LeveledCompactionStrategy (LCS): The leveled compaction strategy creates SSTables of a
fixed, relatively small size (160 MB by default) that are grouped into levels. Within each level, SSTables
are guaranteed to be non-overlapping. Each level (L0, L1, L2 and so on) is 10 times as large as the
previous. Disk I/O is more uniform and predictable on higher than on lower levels as SSTables are
continuously being compacted into progressively larger levels. At each level, row keys are merged into
non-overlapping SSTables in the next level. This process can improve performance for reads, because
Cassandra can determine which SSTables in each level to check for the existence of row key data.
This compaction strategy is modeled after Google's LevelDB implementation. Also see LCS compaction
subproperties.

For more details, see How is data maintained? and Configuring compaction.

Note: A major compaction incurs considerably more disk I/O than minor compactions.

nodetool compactionhistory
Provides the history of compaction operations.

Provides the history of compaction operations.

/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesSTCS
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesDTCS
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesLCS
/en/cql/3.3/cql/cql_reference/compactSubprop.html#compactionSubpropertiesLCS

Cassandra tools

189

Synopsis

$ nodetool <options> compactionhistory

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Example
The actual output of compaction history is seven columns wide. The first three columns show the id,
keyspace name, and table name of the compacted SSTable.

$ nodetool compactionhistory

Compaction History:
id keyspace_name
 columnfamily_name
d06f7080-07a5-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
d198ae40-07a5-11e4-9b36-abc3a0ec9088 libdata users
0381bc30-07b0-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
74eb69b0-0621-11e4-9b36-abc3a0ec9088 system local
e35dd980-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
8d5cf160-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
ba376020-07af-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
d18cc760-07a5-11e4-9b36-abc3a0ec9088 libdata libout
64009bf0-07a4-11e4-9b36-abc3a0ec9088 libdata libout
d04700f0-07a5-11e4-9b36-abc3a0ec9088 system sstable_activity
c2a97370-07a9-11e4-9b36-abc3a0ec9088 libdata users
cb928a80-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
cd8d1540-079e-11e4-9b36-abc3a0ec9088 system schema_columns
62ced2b0-07a4-11e4-9b36-abc3a0ec9088 system schema_keyspaces
d19cccf0-07a5-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
640bbf80-07a4-11e4-9b36-abc3a0ec9088 libdata users
6cd54e60-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
c29241f0-07a9-11e4-9b36-abc3a0ec9088 libdata libout
c2a30ad0-07a9-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
e3a6d920-079d-11e4-9b36-abc3a0ec9088 system schema_keyspaces
62c55cd0-07a4-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
62b07540-07a4-11e4-9b36-abc3a0ec9088 system schema_columns
cdd038c0-079e-11e4-9b36-abc3a0ec9088 system schema_keyspaces
b797af00-07af-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
8c918b10-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
377d73f0-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress

Cassandra tools

190

62b9c410-07a4-11e4-9b36-abc3a0ec9088 system local
d0566a40-07a5-11e4-9b36-abc3a0ec9088 system schema_columns
ba637930-07af-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
cdbc1480-079e-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
e3456f80-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
d086f020-07a5-11e4-9b36-abc3a0ec9088 system schema_keyspaces
d06118a0-07a5-11e4-9b36-abc3a0ec9088 system local
cdaafd80-079e-11e4-9b36-abc3a0ec9088 system local
640fde30-07a4-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
37638350-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1

The four columns to the right of the table name show the timestamp, size of the SSTable before and after
compaction, and the number of partitions merged. The notation means {tables:rows}. For example: {1:3,
3:1} means 3 rows were taken from one SSTable (1:3) and 1 row taken from 3 SSTables (3:1) to make the
one SSTable in that compaction operation.

. . . compacted_at bytes_in bytes_out rows_merged

. . . 1404936947592 8096 7211 {1:3, 3:1}

. . . 1404936949540 144 144 {1:1}

. . . 1404941328243 1305838191 1305838191 {1:4647111}

. . . 1404770149323 5864 5701 {4:1}

. . . 1404940844824 573 148 {1:1, 2:2}

. . . 1404940700534 576 155 {1:1, 2:2}

. . . 1404941205282 766331398 766331398 {1:2727158}

. . . 1404936949462 8901649 8901649 {1:9315}

. . . 1404936336175 8900821 8900821 {1:9315}

. . . 1404936947327 223 108 {1:3, 2:1}

. . . 1404938642471 144 144 {1:1}

. . . 1404940804904 383020422 383020422 {1:1363062}

. . . 1404933936276 4889 4177 {1:4}

. . . 1404936334171 441 281 {1:3, 2:1}

. . . 1404936949567 379 79 {2:2}

. . . 1404936336248 144 144 {1:1}

. . . 1404940645958 307520780 307520780 {1:1094380}

. . . 1404938642319 8901649 8901649 {1:9315}

. . . 1404938642429 416 165 {1:3, 2:1}

. . . 1404933543858 692 281 {1:3, 2:1}

. . . 1404936334109 7760 7186 {1:3, 2:1}

. . . 1404936333972 4860 4724 {1:2, 2:1}

. . . 1404933936715 441 281 {1:3, 2:1}

. . . 1404941200880 1269180898 1003196133 {1:2623528,
 2:946565}
. . . 1404940699201 297639696 297639696 {1:1059216}
. . . 1404940556463 592 148 {1:2, 2:2}
. . . 1404936334033 5760 5680 {2:1}
. . . 1404936947428 8413 5316 {1:2, 3:1}
. . . 1404941205571 429 42 {2:2}
. . . 1404933936584 7994 6789 {1:4}
. . . 1404940844664 306699417 306699417 {1:1091457}
. . . 1404936947746 601 281 {1:3, 3:1}
. . . 1404936947498 5840 5680 {3:1}
. . . 1404933936472 5861 5680 {3:1}
. . . 1404936336275 378 80 {2:2}
. . . 1404940556293 302170540 281000000 {1:924660, 2:75340}

Cassandra tools

191

nodetool compactionstats
Provide statistics about a compaction.

Provide statistics about a compaction.

Synopsis

$ nodetool <options> compactionstats -H

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-H --human-readable Display bytes in human readable form: KiB
(kibibyte), MiB (mebibyte), GiB (gibibyte), TiB
(tebibyte).

Description
The total column shows the total number of uncompressed bytes of SSTables being compacted. The
system log lists the names of the SSTables compacted.

Example

$ nodetool compactionstats

pending tasks: 5
 compaction type keyspace table completed
 total unit progress
 Compaction Keyspace1 Standard1 282310680
 302170540 bytes 93.43%
 Compaction Keyspace1 Standard1 58457931
 307520780 bytes 19.01%
Active compaction remaining time : 0h00m16s

nodetool decommission
Deactivates a node by streaming its data to another node.

Deactivates a node by streaming its data to another node.

Synopsis

$ nodetool <options> decommission

Table: Options

Short Long Description

-h --host Hostname or IP address.

Cassandra tools

192

Short Long Description

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Causes a live node to decommission itself, streaming its data to the next node on the ring. Use netstats to
monitor the progress, as described on http://wiki.apache.org/cassandra/NodeProbe#Decommission and
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely.

nodetool describecluster
Provide the name, snitch, partitioner and schema version of a cluster

Provide the name, snitch, partitioner and schema version of a cluster

Synopsis

$ nodetool <options> describecluster -- <datacenter>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Describe cluster is typically used to validate the schema after upgrading. If a schema disagreement occurs,
check for and resolve schema disagreements.

Example

$ nodetool describecluster

Cluster Information:
 Name: Test Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 65e78f0e-e81e-30d8-a631-a65dff93bf82: [127.0.0.1]

If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.

http://wiki.apache.org/cassandra/NodeTool#Decommission
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely
/en/landing_page/doc/landing_page/troubleshooting/cassandra/schemaDisagree.html

Cassandra tools

193

$ nodetool describecluster

Cluster Information:
 Name: Production Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
 [10.202.205.203]

nodetool describering
Provides the partition ranges of a keyspace.

Provides the partition ranges of a keyspace.

Synopsis

$ nodetool <options> describering -- <keyspace>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

-- Separates an option from an argument that could be mistaken for a option.

Example
This example shows the sample output of the command on a three-node cluster.

$ nodetool describering demo_keyspace

Schema Version:1b04bd14-0324-3fc8-8bcb-9256d1e15f82
TokenRange:
 TokenRange(start_token:3074457345618258602,
 end_token:-9223372036854775808,
 endpoints:[127.0.0.1, 127.0.0.2, 127.0.0.3],
 rpc_endpoints:[127.0.0.1, 127.0.0.2, 127.0.0.3],
 endpoint_details:[EndpointDetails(host:127.0.0.1,
 datacenter:datacenter1, rack:rack1),
 EndpointDetails(host:127.0.0.2, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.3, datacenter:datacenter1,
 rack:rack1)])
 TokenRange(start_token:-3074457345618258603,
 end_token:3074457345618258602,
 endpoints:[127.0.0.3, 127.0.0.1, 127.0.0.2],
 rpc_endpoints:[127.0.0.3, 127.0.0.1, 127.0.0.2],
 endpoint_details:[EndpointDetails(host:127.0.0.3,
 datacenter:datacenter1, rack:rack1),

Cassandra tools

194

 EndpointDetails(host:127.0.0.1, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.2, datacenter:datacenter1,
 rack:rack1)])
 TokenRange(start_token:-9223372036854775808,
 end_token:-3074457345618258603,
 endpoints:[127.0.0.2, 127.0.0.3, 127.0.0.1],
 rpc_endpoints:[127.0.0.2, 127.0.0.3, 127.0.0.1],
 endpoint_details:[EndpointDetails(host:127.0.0.2,
 datacenter:datacenter1, rack:rack1),
 EndpointDetails(host:127.0.0.3, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.1, datacenter:datacenter1,
 rack:rack1)])

If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.

$ nodetool describecluster

Cluster Information:
 Name: Production Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
 [10.202.205.203]

nodetool disableautocompaction
Disables autocompaction for a keyspace and one or more tables.

Disables autocompaction for a keyspace and one or more tables.

Synopsis

$ nodetool <options> disableautocompaction -- <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Keyspace name.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
The keyspace can be followed by one or more tables.

Cassandra tools

195

nodetool disablebackup
Disables incremental backup.

Disables incremental backup.

Synopsis

$ nodetool <options> disablebackup

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool disablebinary
Disables the native transport.

Disables the native transport.

Synopsis

$ nodetool <options> disablebinary

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Disables the binary protocol, also known as the native transport.

nodetool disablegossip
Disables the gossip protocol.

Disables the gossip protocol.

Synopsis

$ nodetool <options> disablegossip

Cassandra tools

196

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
This command effectively marks the node as being down.

nodetool disablehandoff
Disables storing of future hints on the current node.

Disables storing of future hints on the current node.

Synopsis

$ nodetool <options> disablehandoff

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool disablehintsfordc
Disable hints for a datacenter.

Disable hints for a datacenter.

Synopsis

$ nodetool [options] disablehintsfordc [--] <datacenter>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

Cassandra tools

197

Short Long Description

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

datacenter The data center to disable.

-- Separates an option from an argument that could be mistaken for a
option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool disablehintsfordc operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do
not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

• [--] can be used to separate command-line options from the list of arguments, when the list might be
mistaken for options.

Description
The nodetool disablehintsfordc command is used to turn off hints for a datacenter. This can be
useful if there is a downed datacenter, but hints should continue on other datacenters. Another common
case is during datacenter failover, when hints will put unnecessary pressure on the datacenter.

Examples

$ nodetool -u cassandra -pw cassandra disablehintsfordc DC2

nodetool disablethrift
Disables the Thrift server.

Disables the Thrift server.

Synopsis

$ nodetool [options] disablethrift

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

198

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool disablethrift operates on a single node in the cluster if -h is not used to identify one

or more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Description
nodetool disablethrift will disable thrift on a node preventing the node from acting as a coordinator.
The node can still be a replica for a different coordinator and data read at consistency level ONE could
be stale. To cause a node to ignore read requests from other coordinators, nodetool disablegossip
would also need to be run. However, if both commands are run, the node will not perform repairs, and
the node will continue to store stale data. If the goal is to repair the node, set the read operations to a
consistency level of QUORUM or higher while you run repair. An alternative approach is to delete the
node's data and restart the Cassandra process.

Note that the nodetool commands using the -h option will not work remotely on a disabled node until
nodetool enablethrift and nodetool enablegossip are run locally on the disabled node.

Examples

$ nodetool -u cassandra -pw cassandra disablethrift 192.168.100.1

nodetool drain
Drains the node.

Drains the node.

Synopsis

$ nodetool <options> drain

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Flushes all memtables from the node to SSTables on disk. Cassandra stops listening for connections from
the client and other nodes. You need to restart Cassandra after running nodetool drain. You typically
use this command before upgrading a node to a new version of Cassandra. To simply flush memtables to
disk, use nodetool flush.

Cassandra tools

199

nodetool enableautocompaction
Enables autocompaction for a keyspace and one or more tables.

Enables autocompaction for a keyspace and one or more tables.

Synopsis

$ nodetool <options> enableautocompaction -- <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
The keyspace can be followed by one or more tables. Enables compaction for the named keyspace or the
current keyspace, and one or more named tables, or all tables.

nodetool enablebackup
Enables incremental backup.

Enables incremental backup.

Synopsis

$ nodetool <options> enablebackup

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

200

nodetool enablebinary
Re-enables native transport.

Re-enables native transport.

Synopsis

$ nodetool <options> enablebinary

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Re-enables the binary protocol, also known as native transport.

nodetool enablegossip
Re-enables gossip.

Re-enables gossip.

Synopsis

$ nodetool <options> enablegossip

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool enablehandoff
Re-enables the storing of future hints on the current node.

Re-enables the storing of future hints on the current node.

Synopsis

$ nodetool <options> enablehandoff

Cassandra tools

201

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool enablehintsfordc
Enable hints for a datacenter.

Enable hints for a datacenter.

Synopsis

$ nodetool [options] enablehintsfordc [--] <datacenter>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

datacenter The datacenter to enable.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool enablehintsfordc operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do
not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

• [--] can be used to separate command-line options from the list of arguments, when the list might be
mistaken for options.

Description
The nodetool enablehintsfordc command is used to turn on hints for a datacenter. The
cassandra.yaml file has a parameter, hinted_handoff_disabled_datacenters that will blacklist datacenters
on startup. If a datacenter can be enabled later with nodetool enablehintsfordc.

Cassandra tools

202

Examples

$ nodetool -u cassandra -pw cassandra enablehintsfordc DC2

nodetool enablethrift
Re-enables the Thrift server.

Re-enables the Thrift server.

Synopsis

$ nodetool <options> enablethrift

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool failuredetector
Shows the failure detector information for the cluster.

Shows the failure detector information for the cluster.

Synopsis

$ nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
 [(-pw <password> | --password <password>)]
 [(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]
 [(-u <username> | --username <username>)] failuredetector

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Shows the failure detector information for the cluster.

Cassandra tools

203

nodetool flush
Flushes one or more tables from the memtable.

Flushes one or more tables from the memtable.

Synopsis

$ nodetool <options> flush -- <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
You can specify a keyspace followed by one or more tables that you want to flush from the memtable to
SSTables on disk.

nodetool gcstats
Print garbage collection (GC) statistics.

Print garbage collection (GC) statistics.

Synopsis

$ nodetool [options] gcstats

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.

Cassandra tools

204

• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the
host, then you must specify credentials.

• nodetool gcstats operates on a single node in the cluster if -h is not used to identify one or more
other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Description
The nodetool gcstats command will print garbage collection statistics that returns values based on
all the garbage collection that has run since the last time nodetool gcstats was run. Statistics identify
the interval time, some GC elapsed time measures, the disk space reclaimed (in MB), number of garbage
collections that took place, and direct memory bytes.

Examples

$ nodetool -u cassandra -pw cassandra gcstats

nodetool getcompactionthreshold
Provides the minimum and maximum compaction thresholds in megabytes for a table.

Provides the minimum and maximum compaction thresholds in megabytes for a table.

Synopsis

$ nodetool <options> getcompactionthreshold -- <keyspace> <table>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table Name of table.

-- Separates an option from an argument that could be mistaken for a option.

nodetool getcompactionthroughput
Print the throughput cap (in MB/s) for compaction in the system.

Print the throughput cap (in MB/s) for compaction in the system.

Synopsis

$ nodetool [options] getcompactionthroughput

Cassandra tools

205

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool getcompactionthroughput operates on a single node in the cluster if -h is not used to

identify one or more other nodes. If the node from which you issue the command is the intended target,
you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target
node, or nodes, using -h.

Description
The nodetool getcompactionthroughput command prints the current compaction throughput.

Examples

$ nodetool -u cassandra -pw cassandra getcompactionthroughput

nodetool getendpoints
Provides the IP addresses or names of replicas that own the partition key.

Provides the IP addresses or names of replicas that own the partition key.

Synopsis

$ nodetool <options> getendpoints -- <keyspace> <table> key

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table Name of table.

Cassandra tools

206

Short Long Description

key Partition key of the end points you want to get.

-- Separates an option from an argument that could be mistaken for a option.

Example
For example, which nodes own partition key_1, key_2, and key_3?

Note: The partitioner returns a token for the key. Cassandra will return an endpoint whether or not data
exists on the identified node for that token.

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_1

127.0.0.2

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_2

127.0.0.2

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_2

127.0.0.1

nodetool getlogginglevels
Get the runtime logging levels.

Get the runtime logging levels.

Synopsis

$ nodetool <options> getlogginglevels

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool getsstables
Provides the SSTables that own the partition key.

Provides the SSTables that own the partition key.

Cassandra tools

207

Synopsis

$ nodetool <options> getsstables [(-hf | --hex-format)] -- <keyspace> <table>
 <key>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table One or more table names, separated by a space.

key Partition key of the SSTables.

-- Separates an option from an argument that could be mistaken for a option.

Description
This command can be used to retrieve an SSTable.

Examples
An example of this command retrieves the SSTable for cycling.cyclist_name with the key argument
fb372533-eb95-4bb4-8685-6ef61e994caa for one of the cyclists listed:

$ nodetool getsstables cycling cyclist_name 'fb372533-
eb95-4bb4-8685-6ef61e994caa'

The output is:

/homedir/datastax-ddc-3.6.0/data/data/cycling/
cyclist_name-612a64002ec211e6a92457e568fce26f/ma-1-big-Data.db

Sometimes it's useful to retrieve an SSTable from the hex string representation of its key, for instance,
when you get this exception and you want to find out which SSTable owns the faulty key:

java.lang.AssertionError: row DecoratedKey(2769066505137675224,
 00040000002e00000800000153441a3ef000) received out of order wrt
 DecoratedKey(2774747040849866654, 00040000019b0000080000015348847eb200)

The nodetool getsstables command will only work if the primary key of the given table is a blob.

nodetool getsstables keyspace table 00040000002e00000800000153441a3ef000

For such cases in Cassandra 3.6 and later, the option --hex-key can be used to retrieve the
DecoratedKey from the hexstr representation of the key:

nodetool getsstables ks cf --hex-key 00040000002e00000800000153441a3ef000

$ nodetool getsstables keyspace1 standard1 3330394c344e35313730

Cassandra tools

208

nodetool getstreamthroughput
Provides the Mb per second outbound throughput limit for streaming in the system.

Provides the Mb (megabit) per second outbound throughput limit for streaming in the system.

Synopsis

$ nodetool <options> getstreamthroughput

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool gettimeout
Print the timeout value of the given type in milliseconds.

Print the timeout value of the given type in milliseconds (Cassandra 3.4 and later).

Synopsis

$ nodetool [options] gettimeout [--] <timeout_type>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

timeout_type The timeout type, one of read, range, write, counterwrite, cascontention,
truncate, streamingsocket, misc (general rpc_timeout_in_ms).

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• -- separates an option and argument that could be mistaken for a option.
• The timeout type:

Cassandra tools

209

• read
• range
• write
• counterwrite
• cascontention
• truncate
• streamingsocket
• misc, such as general rpc_timeout_in_ms

Description
The nodetool gettimeout command prints the timeout value of the given type in milliseconds. Several
timeouts are available.

Examples

$ nodetool -u cassandra -pw cassandra gettimeout read

nodetool gettraceprobability
Get the probability for tracing a request.

Get the current trace probability.

Synopsis

$ nodetool <options> gettraceprobability

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides the current trace probability. To set the trace probability, see nodetool settraceprobability.

nodetool gossipinfo
Provides the gossip information for the cluster.

Provides the gossip information for the cluster.

Synopsis

$ nodetool <options> gossipinfo

Cassandra tools

210

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool help
Provides nodetool command help.

Provides nodetool command help.

Synopsis

$ nodetool help <command>

Description
The help command provides a synopsis and brief description of each nodetool command.

Examples
Using nodetool help lists all commands and usage information. For example, nodetool help netstats
provides the following information.

NAME
 nodetool netstats - Print network information on provided host
 (connecting node by default)

SYNOPSIS
 nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
 [(-pw <password> | --password <password>)]
 [(-u <username> | --username <username>)] netstats

OPTIONS
 -h <host>, --host <host>
 Node hostname or ip address

 -p <port>, --port <port>
 Remote jmx agent port number

 -pw <password>, --password <password>
 Remote jmx agent password

 -u <username>, --username <username>
 Remote jmx agent username

nodetool info
Provides node information, such as load and uptime.

Provides node information, such as load and uptime.

Cassandra tools

211

Synopsis

$ nodetool <options> info (-T | --tokens)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-T --tokens Show all tokens.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides node information including the token and on disk storage (load) information, times started
(generation), uptime in seconds, and heap memory usage.

nodetool invalidatecountercache
Resets the global counter cache parameter, counter_cache_keys_to_save, to the default (not set), which saves all keys.

Invalidates the counter cache, and resets the global counter cache parameter,
counter_cache_keys_to_save, to the default (not set), which saves all keys..

Synopsis

$ nodetool [options] invalidatecountercache

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool invalidatecountercache operates on a single node in the cluster if -h is not used to

identify one or more other nodes. If the node from which you issue the command is the intended target,
you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target
node, or nodes, using -h.

Cassandra tools

212

Description
The nodetool invalidatecountercache command will invalidate the counter cache, and the system
will start saving all counter keys.

Examples

$ nodetool -u cassandra -pw cassandra invalidatecountercache

nodetool invalidatekeycache
Resets the global key cache parameter to the default, which saves all keys.

Resets the global key cache parameter to the default, which saves all keys.

Synopsis

$ nodetool <options> invalidatekeycache

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
By default the key_cache_keys_to_save is disabled in the cassandra.yaml. This command resets the
parameter to the default.

nodetool invalidaterowcache
Resets the global key cache parameter, row_cache_keys_to_save, to the default (not set), which saves all keys.

Resets the global key cache parameter, row_cache_keys_to_save, to the default (not set), which saves all
keys.

Synopsis

$ nodetool <options> invalidaterowcache

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

Cassandra tools

213

Short Long Description

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool join
Causes the node to join the ring.

Causes the node to join the ring.

Synopsis

$ nodetool <options> join

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Causes the node to join the ring, assuming the node was initially not started in the ring using the -
Djoin_ring=false cassandra utility option. The joining node should be properly configured with the desired
options for seed list, initial token, and auto-bootstrapping.

nodetool listsnapshots
Lists snapshot names, size on disk, and true size.

Lists snapshot names, size on disk, and true size.

Synopsis

$ nodetool <options> listsnapshots

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

214

Example

Snapshot Details:
Snapshot Name Keyspace Column Family True Size Size on Disk

1387304478196 Keyspace1 Standard1 0 bytes 308.66 MB
1387304417755 Keyspace1 Standard1 0 bytes 107.21 MB
1387305820866 Keyspace1 Standard2 0 bytes 41.69 MB

 Keyspace1 Standard1 0 bytes 308.66 MB

nodetool move
Moves the node on the token ring to a new token.

Moves the node on the token ring to a new token.

Synopsis

$ nodetool <options> move -- <new token>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

new token Number in partition range. For Murmur3Partitioner (default): -263 to +263-1.

-- Separates an option from an argument that could be mistaken for a option.

Description
Escape negative tokens using \\ . For example: move \\-123. This command moves a node from one token
value to another. This command is generally used to shift tokens slightly.

nodetool netstats
Provides network information about the host.

Provides network information about the host.

Synopsis

$ nodetool <options> netstats -H

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

Cassandra tools

215

Short Long Description

-pw --password Password.

-u --username Remote JMX agent username.

_H --human-readable Display bytes in human readable form: KiB
(kibibyte), MiB (mebibyte), GiB (gibibyte), TiB
(tebibyte).

-- Separates an option from an argument that could be mistaken for a option.

Description
The default host is the connected host if the user does not include a host name or IP address in the
command. The output includes the following information:

• JVM settings
• Mode

The operational mode of the node: JOINING, LEAVING, NORMAL, DECOMMISSIONED, CLIENT
• Read repair statistics
• Attempted

The number of successfully completed read repair operations
• Mismatch (blocking)

The number of read repair operations since server restart that blocked a query.
• Mismatch (background)

The number of read repair operations since server restart performed in the background.
• Pool name

Information about client read and write requests by thread pool.
• Active, pending, and completed number of commands and responses

Example
Get the network information for a node 10.171.147.128:

$ nodetool -h 10.171.147.128 netstats

The output is:

Mode: NORMAL
Not sending any streams.
Read Repair Statistics:
Attempted: 0
Mismatch (Blocking): 0
Mismatch (Background): 0
Pool Name Active Pending Completed
Commands n/a 0 1156
Responses n/a 0 2750

nodetool pausehandoff
Pauses the hints delivery process

Pauses the hints delivery process

Cassandra tools

216

Synopsis

$ nodetool <options> pausehandoff

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool proxyhistograms
Provides a histogram of network statistics.

Provides a histogram of network statistics at the time of the command.

Synopsis

$ nodetool <options> proxyhistograms

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
The output of this command shows the full request latency recorded by the coordinator. The output
includes the percentile rank of read and write latency values for inter-node communication. Typically, you
use the command to see if requests encounter a slow node.

Examples
This example shows the output from nodetool proxyhistograms after running 4,500 insert statements and
45,000 select statements on a three ccm node-cluster on a local computer.

$ nodetool proxyhistograms

proxy histograms
Percentile Read Latency Write Latency Range Latency
 (micros) (micros) (micros)
50% 1502.50 375.00 446.00

https://github.com/pcmanus/ccm

Cassandra tools

217

75% 1714.75 420.00 498.00
95% 31210.25 507.00 800.20
98% 36365.00 577.36 948.40
99% 36365.00 740.60 1024.39
Min 616.00 230.00 311.00
Max 36365.00 55726.00 59247.00

In Cassandra 3.6 and later, three metrics have been added to the output:

• CAS Read Latency
• CAS Write Latency
• View Write Latency

CAS Read and Write Latency provides data for Cassandra compare-and-set operations, while View Write
Latency provides data for materialized view write operations. The results are slightly different from previous
versions:

proxy histograms
Percentile Read Latency Write Latency Range Latency CAS
 Read Latency CAS Write Latency View Write Latency
 (micros) (micros) (micros)
 (micros) (micros) (micros)
50% 454.83 379.02 1955.67
 0.00 0.00 0.00
75% 1358.10 943.13 4055.27
 0.00 0.00 0.00
95% 3379.39 12108.97 20924.30
 0.00 0.00 0.00
98% 7007.51 155469.30 89970.66
 0.00 0.00 0.00
99% 8409.01 155469.30 155469.30
 0.00 0.00 0.00
Min 73.46 126.94 126.94
 0.00 0.00 0.00
Max 14530.76 155469.30 155469.30
 0.00 0.00 0.00

nodetool rangekeysample
Provides the sampled keys held across all keyspaces.

Provides the sampled keys held across all keyspaces.

Synopsis

$ nodetool <options> rangekeysample

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

218

nodetool rebuild
Rebuilds data by streaming from other nodes.

Rebuilds data by streaming from other nodes.

Synopsis

$ nodetool options rebuild
[-ks | --keyspace keyspace_name [, keyspace_name] . . .]
[-ts | --tokens token_spec]
[-- source-dc-name]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-ks
specific_keyspace

--keyspace
specific_keyspace

Rebuild specific keyspace.

source-dc-name Name of datacenter from which to select sources for streaming. By default,
choose any datacenter.

-- Separates an option from an argument that could be mistaken for a option.

Parameters
keyspace_name (Cassandra 3.6 and later)

The name of the keyspace to rebuild. The rebuild command works with a single keyspace or a comma-
delimited list of keyspaces.

token_spec (Cassandra 3.6 and later)

One or more tokens, and/or one or more ranges of tokens. The token_spec can be:

• One specific token.
• A comma-delimited list of single tokens.
• A range of tokens, specified as (start_token, end_token).
• A comma-delimited list of token ranges — for example, (start_token1, end_token1) , (start_token2,

end_token2, . . .
• A comma-delimited list of mixed single tokens and token ranges — for example, token1, (start_token2,

end_token2) , (start_token3, end_token3) , token4, . . .

--

Separates an option and argument that could be mistaken for a option.

source-dc-name

The name of the datacenter Cassandra uses as the source for streaming. Cassandra rebuilds from any
datacenter. If the statement does not specify one, Cassandra chooses at random.

Cassandra tools

219

Description
This command operates on multiple nodes in a cluster. Like nodetool bootstrap, rebuild only streams
data from a single source replica when rebuilding a token range. Use this command to add a new
datacenter to an existing cluster.

If rebuild fails because some token ranges cannot be retrieved, you can rebuild selectively by using the -
ts or --token option to specify a list of tokens, or one or more token ranges.

Note: If rebuild is interrupted before completion, you can restart it by re-entering the command. The
process resumes from the point at which it was interrupted.

nodetool rebuild_index
Performs a full rebuild of the index for a table

Performs a full rebuild of the index for a table

Synopsis

$ nodetool <options> rebuild_index -- (<keyspace> <table> <indexName> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table One or more table names, separated by a space.

indexName List of index names separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

The keyspace and table name followed by a list of index names. For example: Standard3.IdxName
Standard3.IdxName1

Description
Fully rebuilds one or more indexes for a table.

nodetool refresh
Loads newly placed SSTables onto the system without a restart.

Loads newly placed SSTables onto the system without a restart.

Synopsis

$ nodetool <options> refresh -- <keyspace> <table>

Cassandra tools

220

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table Name of table.

-- Separates an option from an argument that could be mistaken for a option.

nodetool refreshsizeestimates
Refresh system.size_estimates table.

Refreshes system.size_estimates table. Use when huge amounts of data are inserted or truncated which
can result in size estimates becoming incorrect.

Synopsis

$ nodetool <options> refreshsizeestimates

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool reloadtriggers
Reloads trigger classes.

Reloads trigger classes.

Synopsis

$ nodetool <options> reloadtriggers

Table: Options

Short Long Description

-h --host Hostname or IP address.

Cassandra tools

221

Short Long Description

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool relocatesstables
Rewrites any SSTable that contains tokens that should be in another data directory.

In Cassandra 3.2 and later, rewrites any SSTable that contains tokens that should be in another data
directory for JBOD disks. Basically, this commands relocates SSTables to the correct disk.

Synopsis

$ nodetool <options>relocatesstables -- <keyspace> <table>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table Name of table.

-- Separates an option from an argument that could be mistaken for a option.

Description
This nodetool command can be used to manually rewrite the location of SSTables on disk. It is for
use with JBOD disk storage. The command can also be used if you change the replication factor for the
cluster stored on JBOD or if you add a new disk. If all the token are correctly stored in the data directories,
nodetool relocatesstables will have no effect.

Examples
Text

$ nodetool relocatesstables cycling

nodetool removenode
Provides the status of current node removal, forces completion of pending removal, or removes the identified node.

Provides the status of current node removal, forces completion of pending removal, or removes the
identified node.

Cassandra tools

222

Synopsis

$ nodetool <options> removenode -- <status> | <force> | <ID>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

status Status of current node removal.

force Forces completion of the pending removal.

ID Host ID, in UUID format.

-- Separates an option from an argument that could be mistaken for a option.

Description
This command removes a node, shows the status of a removal operation, or forces the completion
of a pending removal. When the node is down and nodetool decommission cannot be used, use
nodetool removenode. Run this command only on nodes that are down. If the cluster does not use
vnodes, before running the nodetool removenode command, adjust the tokens.

Examples
Determine the UUID of the node to remove by running nodetool status. Use the UUID of the node that
is down to remove the node.

$ nodetool status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 31.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
DN 192.168.2.103 91.11 KB 256 33.9% d0844a21-3698-4883-
ab66-9e2fd5150edd RAC1
UN 192.168.2.102 124.42 KB 256 32.6% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

$ nodetool removenode d0844a21-3698-4883-ab66-9e2fd5150edd

View the status of the operation to remove the node:

$ nodetool removenode status

RemovalStatus: No token removals in process.

Cassandra tools

223

Confirm that the node has been removed.

$ nodetool removenode status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 37.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
UN 192.168.2.102 124.42 KB 256 38.3% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

nodetool repair
Repairs one or more tables.

Repairs one or more tables.

Synopsis

$ nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
 [(-pw password | --password password)]
 [(-pwf passwordFilePath | --password-file passwordFilePath)]
 [(-u username | --username username)] repair
 [(-dc specific_dc | --in-dc specific_dc)...]
 [(-dcpar | --dc-parallel)] [(-et end_token | --end-token end_token)]
 [(-full | --full)]
 [(-hosts specific_host | --in-hosts specific_host)...]
 [(-j job_threads | --job-threads job_threads)]
 [(-local | --in-local-dc)] [(-pr | --partitioner-range)]
 [(-seq | --sequential)]
 [(-st start_token | --start-token start_token)] [(-tr | --trace)]
 [--] [keyspace tables...]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-dc specific_dc --in-dc specific_dc Repair to nodes in the named datacenter
(specific_dc).

-dcpar --dc-parallel Repair datacenters in parallel, one node per
datacenter at a time.

-et end_token --end-token
end_token

Token UUID. Repair a range of nodes starting with
the first token (see -st) and ending with this token
(end_token). Use -hosts to specify neighbor nodes.

-full --full Do a full repair.

Cassandra tools

224

Short Long Description

-h host_name --host host_name Node host name or IP address.

-hosts
specific_host

--in-hosts
specific_host

Repair specific hosts.

-j job_threads --job-threads
job_threads

Number of threads (job_threads) to run repair jobs.
Usually the number of tables to repair concurrently.
Be aware that increasing this setting puts more load
on repairing nodes. (Default: 1, maximum: 4)

-local --in-local-dc Use to only repair nodes in the same datacenter.

-pr --partitioner-range Run a repair on the partition ranges that are
primary on a replica.

-seq start_token --sequential
start_token

Run a sequential repair.

-st start_token --start-token
start_token

Specify the token (start_token) at which the repair
range starts.

-tr --trace Trace the repair. Traces are logged to
system_traces.events.

keyspace Name of keyspace.

tables One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
Performing an anti-entropy node repair on a regular basis is important, especially in an environment that
deletes data frequently. The repair command repairs one or more nodes in a cluster, and provides
options for restricting repair to a set of nodes. Anti-entropy node repair performs the following tasks:

• Ensures that all data on a replica is consistent.
• Repairs inconsistencies on a node that has been down.

Incremental repair is the default for Cassandra 2.2 and later, and full repair is the default in Cassandra
2.1 and earlier. In Cassandra 2.2 and later, when a full repair is run, SSTables are marked as repaired
and anti-compacted. Parallel repair is the default for Cassandra 2.2 and later, and sequential repair is the
default in Cassandra 2.1 and earlier.

Using options
You can use options to do these other types of repair:

• Sequential or Parallel
• Full or incremental

Use the -hosts option to list the good nodes to use for repairing the bad nodes. Use -h to name the bad
nodes.

Use the -full option for a full repair if required. By default, an incremental repair eliminates the need for
constant Merkle tree construction by persisting already repaired data and calculating only the Merkle trees
for SSTables that have not been repaired. The repair process is likely more performant than the other
types of repair even as datasets grow, assuming you run repairs frequently. Before doing an incremental
repair for the first time, perform migration steps first if necessary for tables created before Cassandra 2.2.

Cassandra tools

225

Use the -dcpar option to repair data centers in parallel. Unlike sequential repair, parallel repair constructs
the Merkle tables for all data centers at the same time. Therefore, no snapshots are required (or
generated). Use parallel repair to complete the repair quickly or when you have operational downtime that
allows the resources to be completely consumed during the repair.

Performing partitioner range repairs by using the -pr option is generally considered a good choice for doing
manual repairs. However, do not use this option with incremental repairs (default for Cassandra 3.0 and
later).

Example
All nodetool repair arguments are optional.

To do a sequential repair of all keyspaces on the current node:

$ nodetool repair -seq

To do a partitioner range repair of the bad partition on current node using the good partitions on 10.2.2.20
or 10.2.2.21:

$ nodetool repair -pr -hosts 10.2.2.20 10.2.2.21

For a start-point-to-end-point repair of all nodes between two nodes on the ring:

$ nodetool -st a9fa31c7-f3c0-44d1-b8e7-a26228867840c -et f5bb146c-
db51-475ca44f-9facf2f1ad6e

To restrict the repair to the local data center, use the -dc option followed by the name of the data center.
Issue the command from a node in the data center you want to repair. Issuing the command from a data
center other than the named one returns an error. Do not use -pr with this option to repair only a local
data center.

$ nodetool repair -dc DC1

Results in output:

[2014-07-24 21:59:55,326] Nothing to repair for keyspace 'system'
[2014-07-24 21:59:55,617] Starting repair command #2, repairing 490 ranges
 for keyspace system_traces (seq=true, full=true)
[2014-07-24 22:23:14,299] Repair session 323b9490-137e-11e4-88e3-
c972e09793ca
 for range (820981369067266915,822627736366088177] finished
[2014-07-24 22:23:14,320] Repair session 38496a61-137e-11e4-88e3-
c972e09793ca
 for range (2506042417712465541,2515941262699962473] finished
. . .

And an inspection of the system.log shows repair taking place only on IP addresses in DC1.

. . .
INFO [AntiEntropyStage:1] 2014-07-24 22:23:10,708 RepairSession.java:171
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] Received merkle tree
 for sessions from /192.168.2.101
INFO [RepairJobTask:1] 2014-07-24 22:23:10,740 RepairJob.java:145
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] requesting merkle trees
 for events (to [/192.168.2.103, /192.168.2.101])
. . .

Cassandra tools

226

nodetool replaybatchlog
Replay batchlog and wait for finish.

Replay batchlog and wait for finish.

Synopsis

$ nodetool <options> replaybatchlog

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
nodetool replaybatchlog is intended to force a batchlog replay. It also blocks until the batches have
been replayed.

nodetool resetlocalschema
Reset the node's local schema and resynchronizes.

Reset the node's local schema and resynchronizes.

Synopsis

$ nodetool [options] resetlocalschema [args]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool resetlocalschema operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do

Cassandra tools

227

not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Description
Normally, this command is used to rectify schema disagreements on different nodes. It can be useful if
table schema changes have generated too many tombstones, on the order of 100,000s.

nodetool resetlocalschema drops the schema information of the local node and resynchronizes the
schema from another node. To drop the schema, the tool truncates all the system schema tables. The
node will temporarily lose metadata about the tables on the node, but will rewrite the information from
another node. If the node is experiencing problems with too many tombstones, the truncation of the tables
will eliminate the tombstones.

This command is useful when you have one node that is out of sync with the cluster. The system schema
tables must have another node from which to fetch the tables. It is not useful when all or many of your
nodes are in an incorrect state. If there is only one node in the cluster (replication factor of 1) – it does
not perform the operation, because another node from which to fetch the tables does not exist. Run the
command on the node experiencing difficulty.

nodetool resumehandoff
Resume hints delivery process.

Resume hints delivery process.

Synopsis

$ nodetool <options> resumehandoff

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool ring
Provides node status and information about the ring.

Provides node status and information about the ring.

Synopsis

$ nodetool <options> ring (-r | --resolve-ip) -- <keyspace>

Table: Options

Short Long Description

-h --host Hostname or IP address.

Cassandra tools

228

Short Long Description

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-r --resolve-
ip

Provide node names instead of IP addresses.

keyspace Name of keyspace.

-- Separates an option from an argument that could be mistaken for a option.

Description
Displays node status and information about the ring as determined by the node being queried. This
information can give you an idea of the load balance and if any nodes are down. If your cluster is not
properly configured, different nodes may show a different ring. Check that the node appears the same way
in the ring.If you use virtual nodes (vnodes), use nodetool status for succinct output.

• Address

The node's URL.
• DC (datacenter)

The datacenter containing the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.
• Status - Up or Down

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Token

The end of the token range up to and including the value listed. For an explanation of token ranges, see
Data Distribution in the Ring .

• Owns

The percentage of the data owned by the node per datacenter times the replication factor. For example,
a node can own 33% of the ring, but show100% if the replication factor is 3.

• Host ID

The network ID of the node.

nodetool scrub
Rebuild SSTables for one or more Cassandra tables.

Rebuild SSTables for one or more Cassandra tables.

/en/archived/cassandra/1.1/docs/cluster_architecture/partitioning.html#data-distribution-in-the-ring

Cassandra tools

229

Synopsis

$ nodetool <options> scrub <keyspace> -- (-ns | --no-snapshot) (-s | --
skip-corrupted) (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-s --skip-
corrupted

Skip corrupted partitions even when scrubbing counter tables (default
false).

-n --no-
validate

Do not validate columns using column validator.

-ns --no-
snapshot

Triggers a snapshot of the scrubbed table first assuming snapshots
are not disabled (default).

keyspace Name of keyspace.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
Rebuilds SSTables on a node for the named tables and snapshots data files before rebuilding as a safety
measure. If possible use nodetool upgradesstables. While scrub rebuilds SSTables, it also discards
data that it deems broken and creates a snapshot, which you have to remove manually. If the -ns option
is specified, snapshot creation is disabled. If scrub can't validate the column value against the column
definition's data type, it logs the partition key and skips to the next partition. Skipping corrupted partitions
in tables having counter columns results in under-counting. By default the scrub operation stops if you
attempt to skip such a partition. To force the scrub to skip the partition and continue scrubbing, re-run
nodetool scrub using the --skip-corrupted option.

nodetool setcachecapacity
Set global key and row cache capacities in megabytes.

Set global key and row cache capacities in megabytes.

Synopsis

$ nodetool <options> setcachecapacity -- <key-cache-capacity> <row-cache-
capacity>

Table: Options

Short Long Description

-h --host Hostname or IP address.

Cassandra tools

230

Short Long Description

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

key-cache-
capacity

Maximum size in MB of the key cache in memory.

row-cache-
capacity

Maximum size in MB of the row cache in memory.

counter-cache-
capacity

Maximum size in MB of the counter cache in memory.

-- Separates an option from an argument that could be mistaken for a option.

Description
The key-cache-capacity argument corresponds to the key_cache_size_in_mb parameter in the
cassandra.yaml. Each key cache hit saves one seek and each row cache hit saves a minimum of two
seeks. Devoting some memory to the key cache is usually a good tradeoff considering the positive effect
on the response time. The default value is empty, which means a minimum of five percent of the heap in
MB or 100 MB.

The row-cache-capacity argument corresponds to the row_cache_size_in_mb parameter in the
cassandra.yaml. By default, row caching is zero (disabled).

The counter-cache-capacity argument corresponds to the counter_cache_size_in_mb in the
cassandra.yaml. By default, counter caching is a minimum of 2.5% of Heap or 50MB.

nodetool setcachekeystosave
Sets the number of keys saved by each cache for faster post-restart warmup.

Sets the number of keys saved by each cache for faster post-restart warmup.

Synopsis

$ nodetool <options> setcachekeystosave -- <key-cache-keys-to-save> <row-
cache-keys-to-save>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

key-cache-
keys-to-save

The number of keys from the key cache to save to the saved caches directory. To
disable, set to 0.

Cassandra tools

231

Short Long Description

row-cache-
keys-to-save

The number of keys from the row cache to save to the saved caches directory. To
disable, set to 0.

counter-cache-
keys-to-save

The number of keys from the counter cache to saved to the saved caches directory. To
disable, set to 0.

-- Separates an option from an argument that could be mistaken for a option.

Description
This command saves the specified number of key and row caches to the saved caches directory,
which you specify in the cassandra.yaml. The key-cache-keys-to-save argument corresponds to the
key_cache_keys_to_save in the cassandra.yaml, which is disabled by default, meaning all keys will
be saved. The row-cache-keys-to-save argument corresponds to the row_cache_keys_to_save in the
cassandra.yaml, which is disabled by default.

nodetool setcompactionthreshold
Sets minimum and maximum compaction thresholds for a table.

Sets minimum and maximum compaction thresholds for a table.

Synopsis

$ nodetool <options> setcompactionthreshold -- <keyspace> <table>
 <minthreshold> <maxthreshold>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of a keyspace.

table Name of a table.

minthreshold Sets the minimum number of SSTables to trigger a minor compaction when using
SizeTieredCompactionStrategy or DateTieredCompactionStrategy.

maxthreshold Sets the maximum number of SSTables to allow in a minor compaction when using
SizeTieredCompactionStrategy or DateTieredCompactionStrategy.

-- Separates an option from an argument that could be mistaken for a option.

Description
This parameter controls how many SSTables of a similar size must be present before a minor compaction
is scheduled. The max_threshold table property sets an upper bound on the number of SSTables that
may be compacted in a single minor compaction, as described in http://wiki.apache.org/cassandra/
MemtableSSTable.

/en/cql/3.3/cql/cql_reference/compactSubprop.html
http://wiki.apache.org/cassandra/MemtableSSTable
http://wiki.apache.org/cassandra/MemtableSSTable

Cassandra tools

232

When using LeveledCompactionStrategy, maxthreshold sets the MAX_COMPACTING_L0, which limits
the number of L0 SSTables that are compacted concurrently to avoid wasting memory or running out of
memory when compacting highly overlapping SSTables.

nodetool setcompactionthroughput
Sets the throughput capacity for compaction in the system, or disables throttling.

Sets the throughput capacity for compaction in the system, or disables throttling.

Synopsis

$ nodetool <options> setcompactionthroughput -- <value_in_mb>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

value_in_mb The throughput capacity in MB per second for compaction. To disable throttling, set to
0.

-- Separates an option from an argument that could be mistaken for a option.

Description
Set value_in_mb to 0 to disable throttling.

nodetool sethintedhandoffthrottlekb
Sets hinted handoff throttle in kb/sec per delivery thread.

Sets hinted handoff throttle in kb/sec per delivery thread.

Synopsis

$ nodetool <options> sethintedhandoffthrottlekb <value_in_kb/sec>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

value_in_kb/sec Throttle time in kilobytes per second.

Cassandra tools

233

Short Long Description

-- Separates an option from an argument that could be mistaken for a option.

Description
When a node detects that a node for which it is holding hints has recovered, it begins sending the hints to
that node. This setting specifies the maximum sleep interval per delivery thread in kilobytes per second
after delivering each hint. The interval shrinks proportionally to the number of nodes in the cluster. For
example, if there are two nodes in the cluster, each delivery thread uses the maximum interval; if there are
three nodes, each node throttles to half of the maximum interval, because the two nodes are expected to
deliver hints simultaneously.

Example

$ nodetool sethintedhandoffthrottlekb 2048

nodetool setlogginglevel
Set the log level for a service.

Set the log level for a service.

Synopsis

$ nodetool <options> setlogginglevel -- <class> <level>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

class The class for changing the level, a fully qualified domain name such as
org.apache.cassandra.service.StorageProxy.

level Logging level, for example DEBUG.

-- Separates an option from an argument that could be mistaken for a option.

Description
You can use this command to set logging levels for services instead of modifying the logback-text.xml file.
The following values are valid for the logger class qualifier:

• org.apache.cassandra
• org.apache.cassandra.db
• org.apache.cassandra.service.StorageProxy

The possible log levels are:

• ALL
• TRACE

Cassandra tools

234

• DEBUG
• INFO
• WARN
• ERROR
• OFF

If both class qualifier and level arguments to the command are empty or null, the command resets logging
to the initial configuration.

Example
This command sets the StorageProxy service to debug level.

$ nodetool setlogginglevel org.apache.cassandra.service.StorageProxy DEBUG

Note: Cassandra 3.0 and later support extended logging for Compaction. This utility must be configured
as part of the table configuration. The extended compaction logs are stored in a separate file. For details,
see Enabling extended compaction logging.

nodetool setstreamthroughput
Sets the throughput capacity in Mb for outbound streaming in the system, or disables throttling.

Sets the throughput capacity in Mb (megabits) for streaming in the system, or disables throttling.

Synopsis

$ nodetool <options> setstreamthroughput -- <value_in_mb>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

value_in_mb Throughput capacity in megabits per second for streaming. To disable, set to 0.

-- Separates an option from an argument that could be mistaken for a option.

Description
Set value_in_mb to 0 to disable throttling.

nodetool settimeout
Set the specified timeout in milliseconds, or 0 to disable timeout.

Set the specified timeout in milliseconds, or 0 to disable timeout. (Cassandra 3.4 and later).

Synopsis

$ nodetool [options] settimeout [--] <timeout_type> <timeout_in_ms>

/en/cql/3.3/cql/cql_reference/compactSubprop.html#enabling-extended-compaction-logging

Cassandra tools

235

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

timeout_type Type of timeout. Type should be one of read, range, write, counterwrite,
cascontention, truncate, streamingsocket, misc (general rpc_timeout_in_ms).

timeout_in_ms Timeout in in milliseconds. To disable socket streaming, set to 0.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• -- separates an option and argument that could be mistaken for a option.
• The timeout type:

• read
• range
• write
• counterwrite
• cascontention
• truncate
• streamingsocket
• misc, such as general rpc_timeout_in_ms

Description
The nodetool gettimeout command sets the specified timeout in milliseconds. Use "0" to disable a
timeout. Several timeouts are available.

Examples

$ nodetool -u cassandra -pw cassandra settimeout read 100

nodetool settraceprobability
Sets the probability for tracing a request.

Sets the probability for tracing a request.

Synopsis

$ nodetool <options> settraceprobability -- <value>

Cassandra tools

236

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

value Trace probability between 0 and 1. For example: 0.2.

-- Separates an option from an argument that could be mistaken for a option.

Description
Probabilistic tracing is useful to determine the cause of intermittent query performance problems by
identifying which queries are responsible. This option traces some or all statements sent to a cluster.
Tracing a request usually requires at least 10 rows to be inserted.

A probability of 1.0 will trace everything whereas lesser amounts (for example, 0.10) only sample a certain
percentage of statements. Care should be taken on large and active systems, as system-wide tracing
will have a performance impact. Unless you are under very light load, tracing all requests (probability
1.0) will probably overwhelm your system. Start with a small fraction, for example, 0.001 and increase
only if necessary. The trace information is stored in a system_traces keyspace that holds two tables –
sessions and events, which can be easily queried to answer questions, such as what the most time-
consuming query has been since a trace was started. Query the parameters map and thread column in the
system_traces.sessions and events tables for probabilistic tracing information.

To discover the current trace probability setting, use nodetool gettraceprobability.

nodetool snapshot
Take a snapshot of one or more keyspaces, or of a table, to backup data.

Take a snapshot of one or more keyspaces, or of a table, to backup data.

Synopsis

$ nodetool <options> snapshot
 (-cf <table> | --column-family <table>)
 (-kc <ktlist> | --kc.list <ktlist> | -kt <ktlist> | --kt-list <ktlist>)
 (-sf | --skip-flush)
 (-t <tag> | --tag <tag>)
 -- (<keyspace>) | (<keyspace> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

Cassandra tools

237

Short Long Description

-u --username Remote JMX agent username.

-cf table --column-
family
table

Name of the table to snapshot. You must specify one and only one
keyspace.

--table
table

Name of the table to snapshot. You must specify one and only one
keyspace.

-kc ktlist --kc.list
ktlist

The list of keyspace.tables to snapshot. Requires list of keyspaces.

-kt ktlist --kt-list
ktlist

The list of keyspace.tablea to snapshot. Requires list of keyspaces.

-sf --skip-
flush

Executes the snapshot without flushing the tables first (Cassandra
3.4 and later).

-t --tag Name of snapshot.

keyspace One or more optional keyspace names, separated by a space. Default: all keyspaces

-- Separates an option from an argument that could be mistaken for a
option.

Description
Use this command to back up data using a snapshot. See the examples below for various options.

Cassandra flushes the node before taking a snapshot, takes the snapshot, and stores the data in the
snapshots directoryof each keyspace in the data directory. If you do not specify the name of a snapshot
directory using the -t option, Cassandra names the directory using the timestamp of the snapshot, for
example 1391460334889. Follow the procedure for taking a snapshot before upgrading Cassandra. When
upgrading, backup all keyspaces. For more information about snapshots, see Apache documentation.

Example: All keyspaces
Take a snapshot of all keyspaces on the node. On Linux, in the Cassandra bin directory, for example:

$ nodetool snapshot

The following message appears:

Requested creating snapshot(s) for [all keyspaces] with snapshot name
 [1391464041163]
Snapshot directory: 1391464041163

Because you did not specify a snapshot name, Cassandra names snapshot directories using the
timestamp of the snapshot. If the keyspace contains no data, empty directories are not created.

Example: Single keyspace snapshot
Assuming you created the keyspace cycling, took a snapshot of the keyspace and named the snapshot
2015.07.17.:

$ nodetool snapshot -t 2015.07.17 cycling

The following output appears:

Requested creating snapshot(s) for [cycling] with snapshot name [2015.07.17]

http://wiki.apache.org/cassandra/Operations#Backing_up_data

Cassandra tools

238

Snapshot directory: 2015.07.17

Assuming the cycling keyspace contains two tables, cyclist_name and upcoming_calendar, taking a
snapshot of the keyspace creates multiple snapshot directories named 2015.07.17. A number of .db files
containing the data are located in these directories. For example, from the installation directory:

$ cd data/data/cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/
snapshots/2015.07.17
$ ls

la-1-big-CompressionInfo.db la-1-big-Index.db la-1-big-TOC.txt
la-1-big-Data.db la-1-big-Statistics.db la-1-big-Digest.adler32
la-1-big-Filter.db la-1-big-Summary.db manifest.json

$ cd data/data/cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/
snapshots/2015.07.17
$ ls

la-1-big-CompressionInfo.db la-1-big-Index.db la-1-big-TOC.txt
la-1-big-Data.db la-1-big-Statistics.db la-1-big-Digest.adler32
la-1-big-Filter.db la-1-big-Summary.db manifest.json

Example: Multiple keyspaces snapshot
Assuming you created a keyspace named mykeyspace in addition to the cycling keyspace, take a
snapshot of both keyspaces.

$ nodetool snapshot mykeyspace cycling

The following message appears:

Requested creating snapshot(s) for [mykeyspace, cycling] with snapshot name
 [1391460334889]
Snapshot directory: 1391460334889

Example: Single table snapshot
Take a snapshot of only the cyclist_name table in the cycling keyspace.

$ nodetool snapshot --table cyclist_name cycling

Requested creating snapshot(s) for [cycling] with snapshot name
 [1391461910600]
Snapshot directory: 1391461910600

Cassandra creates the snapshot directory named 1391461910600 that contains
the backup data of cyclist_name table in data/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/snapshots, for example.

Example: List of different keyspace.tables snapshot
Take a snapshot of several tables in different keyspaces, such as the cyclist_name table in the cycling
keyspace and the sample_times table in the test keyspace. The keyspace.table list should be comma-
delimited with no spaces.

Cassandra tools

239

$ nodetool snapshot -kt cycling.cyclist_name,test.sample_times

Requested creating snapshot(s) for [cycling.cyclist_name,test.sample_times]
 with snapshot name [1431045288401]
Snapshot directory: 1431045288401

nodetool status
Provide information about the cluster, such as the state, load, and IDs.

Provide information about the cluster, such as the state, load, and IDs.

Synopsis

$ nodetool <options> status (-r | --resolve-ip) -- <keyspace>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-r --resolve-
ip

Show node names instead of IP addresses.

keyspace Name of keyspace.

-- Separates an option from an argument that could be mistaken for a option.

Description
The status command provides the following information:

• Status - U (up) or D (down)

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Address

The node's URL.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Tokens

The number of tokens set for the node.
• Owns

The percentage of the data owned by the node per datacenter times the replication factor. For example,
a node can own 33% of the ring, but show 100% if the replication factor is 3.

Cassandra tools

240

Attention: If your cluster uses keyspaces having different replication strategies or replication factors,
specify a keyspace when you run nodetool status to get meaningful ownership information.

• Host ID

The network ID of the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.

Example

This example shows the output from running nodetool status.

$ nodetool status mykeyspace

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.1 47.66 KB 1 33.3% aaa1b7c1-6049-4a08-ad3e-3697a0e30e10
 rack1
UN 127.0.0.2 47.67 KB 1 33.3% 1848c369-4306-4874-afdf-5c1e95b8732e
 rack1
UN 127.0.0.3 47.67 KB 1 33.3% 49578bf1-728f-438d-b1c1-d8dd644b6f7f
 rack1

nodetool statusbackup
Provide the status of backup.

Synopsis

$ nodetool <options> statusbackup

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides the status of backup.

nodetool statusbinary
Provide the status of native transport.

Provide the status of native transport.

Cassandra tools

241

Synopsis

$ nodetool <options> statusbinary

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides the status of the binary protocol, also known as the native transport.

nodetool statusgossip
Provide the status of gossip.

Synopsis

$ nodetool <options> statusgossip

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides the status of gossip.

nodetool statushandoff
Provides the status of hinted handoff.

Synopsis

$ nodetool <options> statushandoff

Cassandra tools

242

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Provides the status of hinted handoff.

nodetool statusthrift
Provide the status of the Thrift server.

Provide the status of the Thrift server.

Synopsis

$ nodetool <options> statusthrift

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

nodetool stop
Stops the compaction process.

Stops the compaction process.

Synopsis

$ nodetool <options> stop -- <compaction_type>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

Cassandra tools

243

Short Long Description

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

compaction type Supported types are COMPACTION, VALIDATION, CLEANUP, SCRUB,
VERIFY, INDEX_BUILD.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool stop operates on a single node in the cluster if -h is not used to identify one or more other

nodes. If the node from which you issue the command is the intended target, you do not need the -h
option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -
h.

• Valid compaction types: COMPACTION, VALIDATION, CLEANUP, SCRUB, INDEX_BUILD

Description
Stops all compaction operations from continuing to run. This command is typically used to stop a
compaction that has a negative impact on the performance of a node. After the compaction stops,
Cassandra continues with the remaining operations in the queue. Eventually, Cassandra restarts the
compaction.

In Cassandra 2.2 and later, a single compaction operation can be stopped with the -id option. Run
nodetool compactionstats to find the compaction ID.

nodetool stopdaemon
Stops the cassandra daemon.

Stops the cassandra daemon.

Synopsis

$ nodetool <options> stopdaemon

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

244

nodetool tablehistograms
Provides statistics about a table that could be used to plot a frequency function.

Provides statistics about a table that could be used to plot a frequency function.

Synopsis

$ nodetool <options> tablehistograms -- <keyspace>.<table>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace Name of keyspace.

table One or more table names, separated by a space.

Note: Either keyspace.table or keyspace table can be used to designate the table.

-- Separates an option from an argument that could be mistaken for a option.

Description
The nodetool tablehistograms command provides statistics about a table, including read/write
latency, partition size, column count, and number of SSTables. The report is incremental, not cumulative.
It covers all operations since the last time nodetool tablehistograms was run in the current session.
The use of the metrics-core library makes the output more informative and easier to understand.

Example
For example, to get statistics about the libout table in the libdata keyspace, use this command:

$ %CASSANDRA_HOME%/bin/nodetool tablehistograms libdata libout

Output:

libdata/libout histograms
Percentile SSTables Write Latency Read Latency Partition Size
 Cell Count
 (micros) (micros) (bytes)

50% 0.00 39.50 36.00 1597
 42
75% 0.00 49.00 55.00 1597
 42
95% 0.00 95.00 82.00 8239
 258
98% 0.00 126.84 110.42 17084
 446
99% 0.00 155.13 123.71 24601
 770

Cassandra tools

245

Min 0.00 3.00 3.00 1110
 36
Max 0.00 50772.00 314.00 126934
 3973

The output shows the percentile rank of read and write latency values, the partition size, and the cell count
for the table.

nodetool tablestats
Provides statistics about one or more tables.

Provides statistics about one or more tables.

Synopsis

$ nodetool [options] tablestats
[-H | --human-readable]
[-i table [, table] . . .] [- -]
[keyspace | table | keyspace.table] [keyspace | table | keyspace.table
] . . .

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-F format --format format Output format: json or yaml.

-H --human-readable Display bytes in human readable form: KiB
(kibibyte), MiB (mebibyte), GiB (gibibyte), TiB
(tebibyte).

-i Ignore the list of tables and display the remaining
tables.

keyspace.table List of tables (or keyspace) names.

-- Separates an option from an argument that could be mistaken for a option.

Description
The nodetool tablestats command provides statistics about one or more tables. It's updated when
SSTables change through compaction or flushing. Cassandra uses the metrics-core library to make the
output more informative and easier to understand.

Table: nodetool tablestats output for a single table

Name of statistic Example
value

Brief description Related information

Keyspace libdata Name of the keyspace Keyspace and table

Table libout Name of this table

http://metrics.dropwizard.io/3.1.0/
/en/glossary/doc/glossary/gloss_keyspace.html
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/glossary/doc/glossary/gloss_table.html

Cassandra tools

246

Name of statistic Example
value

Brief description Related information

SSTable count 3 Number of SSTables
containing data for this table

How to use the SSTable
counts metric

Space used (live) 9592399 Total number of bytes of
disk space used by all active
SSTables belonging to this
table

Storing data on disk in
SSTables

Space used (total) 9592399 Total number of bytes of disk
space used by SSTables
belonging to this table,
including obsolete SSTables
waiting to be GCd

Same as above.

Space used by
snapshots (total):

0 Total number of bytes of disk
space used by snapshot of this
table's data

About snapshots on page
152

Off heap memory used
(total)

Total number of bytes of
off heap memory used for
memtables, Bloom filters,
index summaries and
compression metadata for this
table

SSTable Compression
Ratio

0.367… Ratio of size of compressed
SSTable data to its
uncompressed size

Types of compression options.

Number of keys
(estimate)

3 The number of partition keys
for this table

Not the number of primary
keys. This gives you the
estimated number of partitions
in the table.

Memtable cell count 1022550 Number of cells (storage
engine rows x columns) of data
in the memtable for this table

Cassandra memtable structure
in memory

Memtable data size 32028148 Total number of bytes in the
memtable for this table

Total amount of live data
stored in the memtable,
excluding any data structure
overhead.

Memtable off heap
memory used

0 Total number of bytes of off-
heap data for this memtable,
including column related
overhead and partitions
overwritten

The maximum amount
is set in cassandra.yaml
by the property
memtable_offheap_space_in_mb.

Memtable switch count 3 Number of times a full
memtable for this table was
swapped for an empty one

Increases each time the
memtable for a table is flushed
to disk. See How memtables
are measured article.

Local read count 11207 Number of requests to read
tables in the keyspace since
startup

/en/glossary/doc/glossary/gloss_sstable.html
/en/landing_page/doc/landing_page/troubleshooting/cassandra/slowReads.html
/en/landing_page/doc/landing_page/troubleshooting/cassandra/slowReads.html
/en/cql/3.3/cql/cql_reference/compressSubprop.html
/en/glossary/doc/glossary/gloss_memtable.html
http://thelastpickle.com/blog/2011/05/04/How-are-Memtables-measured.html
http://thelastpickle.com/blog/2011/05/04/How-are-Memtables-measured.html

Cassandra tools

247

Name of statistic Example
value

Brief description Related information

Local read latency 0.048 ms Round trip time in milliseconds
to complete the most recent
request to read the table

Factors that affect read latency

Local write count 17598 Number of local requests to
update the table since startup

Local write latency 0.054 ms Round trip time in milliseconds
to complete an update to the
table

Factors that affect write latency

Pending flushes 0 Estimated number of reads,
writes, and cluster operations
pending for this table

Important: Monitor this
metric to watch for blocked or
overloaded memtable flush
writers. The nodetool tpstats
tool does not report on blocked
flushwriters.

Bloom filter false
positives

0 Number of false positives
reported by this table's Bloom
filter

Tuning bloom filters

Bloom filter false ratio 0.00000 Fraction of all bloom filter
checks resulting in a false
positive from the most recent
read

Bloom filter space
used, bytes

11688 Size in bytes of the bloom filter
data for this table

Bloom filter off heap
memory used

8 The number of bytes of off
heap memory used for Bloom
filters for this table

Index summary off
heap memory used

41 The number of bytes of off
heap memory used for index
summaries for this table

Compression
metadata off heap
memory used

8 The number of bytes of
off heap memory used for
compression offset maps for
this table

Compacted partition
minimum

1110 Size in bytes of the smallest
compacted partition for this
table

Compacted partition
maximum bytes

126934 Size in bytes of the largest
compacted partition for this
table

Compacted partition
mean bytes

2730 The average size of
compacted partitions for this
table

Average live cells per
slice (last five minutes)

0.0 Average number of cells
scanned by single key queries
during the last five minutes

Cassandra tools

248

Name of statistic Example
value

Brief description Related information

Maximum live cells per
slice (last five minutes)

0.0 Maximum number of cells
scanned by single key queries
during the last five minutes

Average tombstones
per slice (last five
minutes)

0.0 Average number of
tombstones scanned by single
key queries during the last five
minutes

Maximum tombstones
per slice (last five
minutes)

0.0 Maximum number of
tombstones scanned by single
key queries during the last five
minutes

Dropped mutations 0.0 The number of mutations
(INSERTs, UPDATEs or
DELETEs) started on this table
but not completed

A high number of dropped
mutations can indicate an
overloaded node.

Examples
An excerpt of the output of the command reporting on a library data table just flushed to disk.

$ nodetool tablestats keyspace1.standard1
Keyspace: keyspace1
 Read Count: 182849
 Read Latency: 0.11363755339104945 ms.
 Write Count: 435355
 Write Latency: 0.01956930550929701 ms.
 Pending Flushes: 0
 Table: standard1
 SSTable count: 2
 Space used (live): 54131487
 Space used (total): 54131487
 Space used by snapshots (total): 0
 Off heap memory used (total): 309620
 SSTable Compression Ratio: 0.0
 Number of keys (estimate): 376390
 Memtable cell count: 200120
 Memtable data size: 47355786
 Memtable off heap memory used: 0
 Memtable switch count: 2
 Local read count: 182849
 Local read latency: 0.125 ms
 Local write count: 435355
 Local write latency: 0.022 ms
 Pending flushes: 0
 Bloom filter false positives: 11
 Bloom filter false ratio: 0.00009
 Bloom filter space used: 272192
 Bloom filter off heap memory used: 272176
 Index summary off heap memory used: 37444
 Compression metadata off heap memory used: 0
 Compacted partition minimum bytes: 216
 Compacted partition maximum bytes: 258
 Compacted partition mean bytes: 258
 Average live cells per slice (last five minutes): 1.0
 Maximum live cells per slice (last five minutes): 1
 Average tombstones per slice (last five minutes): 1.0

Cassandra tools

249

 Maximum tombstones per slice (last five minutes): 1

Using the human-readable option

Use the human-readable -H option to get output in easier-to-read units. For example:

$ C:\> %CASSANDRA_HOME%nodetool tablestats -H keyspace1.standard1
Keyspace: keyspace1
 Read Count: 182849
 Read Latency: 0.11363755339104945 ms.
 Write Count: 435355
 Write Latency: 0.01956930550929701 ms.
 Pending Flushes: 0
 Table: standard1
 SSTable count: 2
 Space used (live): 51.62 MB
 Space used (total): 51.62 MB
 Space used by snapshots (total): 0 bytes
 Off heap memory used (total): 302.36 KB
 SSTable Compression Ratio: 0.0
 Number of keys (estimate): 376390
 Memtable cell count: 200120
 Memtable data size: 45.16 MB
 Memtable off heap memory used: 0 bytes
 Memtable switch count: 2
 Local read count: 182849
 Local read latency: 0.125 ms
 Local write count: 435355
 Local write latency: 0.022 ms
 Pending flushes: 0
 Bloom filter false positives: 11
 Bloom filter false ratio: 0.00000
 Bloom filter space used: 265.81 KB
 Bloom filter off heap memory used: 265.8 KB
 Index summary off heap memory used: 36.57 KB
 Compression metadata off heap memory used: 0 bytes
 Compacted partition minimum bytes: 216 bytes
 Compacted partition maximum bytes: 258 bytes
 Compacted partition mean bytes: 258 bytes
 Average live cells per slice (last five minutes): 1.0
 Maximum live cells per slice (last five minutes): 1
 Average tombstones per slice (last five minutes): 1.0
 Maximum tombstones per slice (last five minutes): 1

nodetool toppartitions
Samples database reads and writes and reports the most active partitions in a specified table.

Samples database reads and writes and reports the most active partitions in a specified table.

Synopsis

$ nodetool [options] toppartitions
[-a samplers] [-k topcount] [-s size] [--]
keyspace table duration

Table: Options

Short Long Description

-h --host Hostname or IP address.

Cassandra tools

250

Short Long Description

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-a samplers Comma separated list of samplers to use (default:
all)

-k topCount The number of the top partitions to list (default: 10)

-s size The capacity of stream summary. A value closer
to the actual cardinality of partitions yields more
accurate results. (default: 256)

keyspace Name of keyspace.

table Name of table.

duration The duration in milliseconds

-- Separates an option from an argument that could be mistaken for a option.

Description
The nodetool toppartitions command samples the activity in a table during the specified duration
and prints lists of the most active partitions during that time period. To run this command you must specify
the keyspace and table to focus on and the time interval (in milliseconds) during which Cassandra samples
the table's activity.

Examples
Sample the most active partitions for the table test.users for 1,000 milliseconds

nodetool toppartitions test users 1000

The output of nodetool toppartitions is similar to the following:

WRITES Sampler:
 Cardinality: ~2 (256 capacity)
 Top 4 partitions:
 Partition Count +/-
 4b504d39354f37353131 15 14
 3738313134394d353530 15 14
 4f363735324e324e4d30 15 14
 303535324e4b4d504c30 15 14

READS Sampler:
 Cardinality: ~3 (256 capacity)
 Top 4 partitions:
 Partition Count +/-
 4d4e30314f374e313730 42 41
 4f363735324e324e4d30 42 41
 303535324e4b4d504c30 42 41
 4e355030324e344d3030 41 40

For each of the samplers used (WRITES and READS in the example), toppartitions reports:

• The cardinality of the sampled operations (that is, the number of unique operations in the sample set)

/en/glossary/doc/glossary/gloss_cardinality.html

Cassandra tools

251

• The n partitions in the specified table that had the most traffic in the specified time period (where n is
the value of the -k argument, or ten if -k is not explicitly set in the command).

For each Partition, toppartitions reports:

Partition

The partition key

Count

The number of operations of the specified type that occurred during the specified time period.

+/-

The margin of error for the Count statistic

Note: To keep the toppartitions reporting from slowing performance, Cassandra does not keep an
exact count of operations, but uses sampling techniques to create an approximate number. (This example
reports on a sample cluster; a production system might generate millions of reads or writes in a few seconds.)
The +/- figure allows you to judge the accuracy of the toppartitions reporting.

nodetool tpstats
Provides usage statistics of thread pools.

Provides usage statistics of thread pools.

Synopsis

$ nodetool <options> tpstats

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

Description
Cassandra is based on a Staged Event Driven Architecture (SEDA). Cassandra separates different tasks
into stages connected by a messaging service. Each stage has a queue and a thread pool. Although some
stages skip the messaging service and queue tasks immediately on a different stage when it exists on
the same node. Cassandra can back up a queue if the next stage is too busy and lead to a performance
bottlenecks, as described in http://wiki.apache.org/cassandra/Operations#Monitoring.

The nodetool tpstats command reports on each stage of Cassandra operations by thread pool:

• The number of Active threads
• The number of Pending requests waiting to be executed by this thread pool
• The number of tasks Completed by this thread pool
• The number of requests that are currently Blocked because the thread pool for the next step in the

service is full
• The total number of All-Time Blocked requests, which are all requests blocked in this thread pool

up to now.

http://wiki.apache.org/cassandra/Operations#Monitoring

Cassandra tools

252

Reports are updated when SSTables change through compaction or flushing.

Run nodetool tpstats on a local node to get statistics for the thread pool used by the Cassandra
instance running on that node.

Run nodetool tpstats with the appropriate options to check the thread pool statistics for a remote
node. For setup instructions, see Secure JMX Authentication.

nodetool tpstats pool names and tasks

This table describes the Cassandra task or property associated with each pool name reported in the
nodetool tpstats output:

Pool Name Associated tasks Related information

AntiEntropyStage Processing repair messages and
streaming

For details, see Nodetool repair.

CacheCleanupExecutorClearing the cache

CommitlogArchiver Copying or archiving commitlog files for
recovery

CompactionExecutor Running compaction

CounterMutationStageProcessing local counter changes Will back up if the write rate exceeds
the mutation rate. A high pending count
will be seen if consistency level is set
to ONE and there is a high counter
increment workload.

GossipStage Distributing node information via Gossip Out of sync schemas can cause issues.
You may have to sync using nodetool
resetlocalschema .

HintedHandoff Sending missed mutations to other
nodes

Usually symptom of a problem
elsewhere. Use nodetool
disablehandoff and run repair.

InternalResponseStageResponding to non-client initiated
messages, including bootstrapping and
schema checking

MemtableFlushWriterWriting memtable contents to disk May back up if the queue is overruns
the disk I/O, or because of sorting
processes.

Warning: nodetool tpstats no
longer reports blocked threads in the
MemtableFlushWriter pool. Check the
Pending Flushes metric reported by
nodetool tblestats.

MemtablePostFlush Cleaning up after after flushing the
memtable (discarding commit logs and
secondary indexes as needed)

MemtableReclaimMemoryMaking unused memory available

MigrationStage Processing schema changes

MiscStage Snapshotting, replicating data after node
remove completed.

Cassandra tools

253

Pool Name Associated tasks Related information

MutationStage Performing local inserts/updates,
schema merges, commit log replays or
hints in progress

A high number of Pending write
requests indicates the node is having
a problem handling them. Fix this by
adding a node, tuning hardware and
configuration, and/or updating data
models.

Native-Transport-
Requests

Processing CQL requests to the server

PendingRangeCalculatorCalculating pending ranges per
bootstraps and departed nodes

Reporting by this tool is not useful — see
Developer notes

ReadRepairStage Performing read repairs Usually fast, if there is good connectivity
between replicas. If Pending grows too
large, attempt to lower the rate for high-
read tables by altering the table to use a
smaller read_repair_chance value, like
0.11.

ReadStage Performing local reads Also includes deserializing data from
row cache. Pending values can cause
increased read latency. Generally
resolved by adding nodes or tuning the
system.

RequestResponseStageHandling responses from other nodes

ValidationExecutor Validating schema

nodetool tpstats droppable messages

Cassandra generates the messages listed below, but discards them after a timeout. The nodetool
tpstats command reports the number of messages of each type that have been dropped. You can view
the messages themselves using a JMX client.

Message Type Stage Notes

BINARY n/a Deprecated

_TRACE n/a (special) Used for recording traces
(nodetool settraceprobability)
Has a special executor (1 thread,
1000 queue depth) that throws
away messages on insertion
instead of within the execute

MUTATION MutationStage If a write message is
processed after its timeout
(write_request_timeout_in_ms) it
either sent a failure to the client or
it met its requested consistency
level and will relay on hinted
handoff and read repairs to do the
mutation if it succeeded.

COUNTER_MUTATION MutationStage If a write message is
processed after its timeout
(write_request_timeout_in_ms) it

https://issues.apache.org/jira/secure/attachment/12564093/5135-v2.txt
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage

Cassandra tools

254

Message Type Stage Notes

either sent a failure to the client or
it met its requested consistency
level and will relay on hinted
handoff and read repairs to do the
mutation if it succeeded.

READ_REPAIR MutationStage Times out after
write_request_timeout_in_ms

READ ReadStage Times out after
read_request_timeout_in_ms. No
point in servicing reads after that
point since it would of returned
error to client

RANGE_SLICE ReadStage Times out after
range_request_timeout_in_ms.

PAGED_RANGE ReadStage Times out after
request_timeout_in_ms.

REQUEST_RESPONSE RequestResponseStage Times out after
request_timeout_in_ms.
Response was completed and
sent back but not before the
timeout

Example
Running nodetool tpstats on the host labcluster:

$ nodetool -h labcluster tpstats

Example output is:

Pool Name Active Pending Completed Blocked All
 time blocked
CounterMutationStage 0 0 0 0
 0
ReadStage 0 0 103 0
 0
RequestResponseStage 0 0 0 0
 0
MutationStage 0 0 13234794 0
 0
ReadRepairStage 0 0 0 0
 0
GossipStage 0 0 0 0
 0
CacheCleanupExecutor 0 0 0 0
 0
AntiEntropyStage 0 0 0 0
 0
MigrationStage 0 0 11 0
 0
ValidationExecutor 0 0 0 0
 0
CommitLogArchiver 0 0 0 0
 0

http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#RequestResponseStage

Cassandra tools

255

MiscStage 0 0 0 0
 0
MemtableFlushWriter 0 0 126 0
 0
MemtableReclaimMemory 0 0 126 0
 0
PendingRangeCalculator 0 0 1 0
 0
MemtablePostFlush 0 0 1468 0
 0
CompactionExecutor 0 0 254 0
 0
InternalResponseStage 0 0 1 0
 0
HintedHandoff 0 0 0

Message type Dropped
RANGE_SLICE 0
READ_REPAIR 0
PAGED_RANGE 0
BINARY 0
READ 0
MUTATION 180
_TRACE 0
REQUEST_RESPONSE 0
COUNTER_MUTATION 0

nodetool truncatehints
Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Synopsis

$ nodetool <options> truncatehints -- (<endpoint> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

endpoint One or more endpoint IP addresses or host names designating which hints to deleted.

-- Separates an option from an argument that could be mistaken for a option.

nodetool upgradesstables
Rewrites SSTables for tables that are not running the current version of Cassandra.

Rewrites SSTables for tables that are not running the current version of Cassandra.

Cassandra tools

256

Synopsis

$ nodetool <options> upgradesstables
 (-a | --include-all-sstables)
 -- <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-
file

Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-a --include-all-
sstables

Snapshot name.

keyspace Name of keyspace.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Description
Rewrites SSTables on a node that are incompatible with the current version. Use this command when
upgrading your server or changing compression options.

nodetool viewbuildstatus
Shows the progress of a materialized view build.

Shows the progress of a materialized view build.

Synopsis

$ nodetool viewbuildstatus <keyspace> <view> | <keyspace.view>

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

keyspace The name of the keyspace.

view The name of the view.

You can also use keyspace.view.

Cassandra tools

257

Short Long Description

-- Separates an option from an argument that could be mistaken for a option.

Description
Shows the progress of a materialized view build.

nodetool verify
Verify (check data checksum for) one or more tables.

Verify (check data checksum for) one or more tables.

Synopsis

$ nodetool [options] verify [(-e | --extended-verify)] [--] [<keyspace>
 <tables>...]

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-e --extended-verify Verify each cell data, beyond simply checking
SSTable checksums.

keyspace Name of keyspace.

table One or more table names, separated by a space.

-- Separates an option from an argument that could be mistaken for a option.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool verify operates on a single node in the cluster if -h is not used to identify one or more

other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Description
The nodetool verify command checks the data checksum for one or more specified tables. An
optional argument, -e or --extended-verify, will verify each cell data, whereas without the option, only
the SSTable checksums are verified.

Examples

$ nodetool -u cassandra -pw cassandra verify cycling cyclist_name

Cassandra tools

258

nodetool version
Provides the version number of Cassandra running on the specified node.

Provides the version number of Cassandra running on the specified node.

Synopsis

$ nodetool <options> version

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Port number.

-pwf --password-file Password file path.

-pw --password Password.

-u --username Remote JMX agent username.

-- Separates an option from an argument that could be mistaken for a option.

The cassandra utility
You can start Cassandra 3.2 and later with special parameters by adding them to the jvm.options file (package or tarball installations) or by entering them at the command prompt (in tarball installations).

You can run Cassandra 3.2 and later with start-up parameters to by adding them to the jvm.options file
(package or tarball installations). You can also enter parameters at the command line when starting up a
tarball installation.

Note: If you are using Cassandra 3.1, see the Cassandra 3.0 documentation.

You can also add options such as maximum and minimum heap size to the jvm.options file to pass
them to the Java virtual machine at startup, rather than setting them in the environment.

Usage
Add a parameter to the jvm.options file as follows:

JVM_OPTS="$JVM_OPTS -D[PARAMETER]"

When starting up a tarball installations, you can add parameters at the command line:

$ cassandra [PARAMETERS]

Examples:

• Command line: $ bin/cassandra -Dcassandra.load_ring_state=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

The Example section contains more examples.

/en/cassandra/3.0/cassandra/tools/toolsCUtility.html

Cassandra tools

259

Command line only options

Option Description

-f Start the cassandra process in foreground. The default is to start as background
process.

-h Help.

-p filename Log the process ID in the named file. Useful for stopping Cassandra by killing its PID.

-v Print the version and exit.

Start-up parameters
The -D option specifies start-up parameters at the command line and in the cassandra-env.sh file.

cassandra.auto_bootstrap=false

Sets auto_bootstrap to false on initial set-up of the cluster. The next time you start the cluster, you do not
need to change the cassandra.yaml file on each node to revert to true.

cassandra.available_processors=number_of_processors

In a multi-instance deployment, each Cassandra instance independently assumes that all CPU processors
are available to it. Use this setting to specify a smaller set of processors.

cassandra.boot_without_jna=true

Configures Cassandra to boot without JNA. If you do not set this parameter to true, and JNA does not
initalize, Cassandra does not boot.

cassandra.config=directory

Sets the directory location of the cassandra.yaml file. The default location depends on the type of installation.

cassandra.initial_token=token

Use when Cassandra is not using virtual nodes (vnodes). Sets the initial partitioner token for a node the
first time the node is started. (Default: disabled)

Note: Vnodes automatically select tokens.

cassandra.join_ring=true|false

When set to false, prevents the Cassandra node from joining a ring on startup. (Default: true) You can
add the node to the ring afterwards using nodetool join and a JMX call.

cassandra.load_ring_state=true|false

When set to false, clears all gossip state for the node on restart. (Default: true)

cassandra.metricsReporterConfigFile=file

Enables pluggable metrics reporter. See Pluggable metrics reporting in Cassandra 2.0.2.

cassandra.native_transport_port=port

Sets the port on which the CQL native transport listens for clients. (Default: 9042)

cassandra.partitioner=partitioner

Sets the partitioner. (Default: org.apache.cassandra.dht.Murmur3Partitioner)

cassandra.replace_address=listen_address or broadcast_address of dead node

To replace a node that has died, restart a new node in its place specifying the listen_address or
broadcast_address that the new node is assuming. The new node must be in the same state as before
bootstrapping, without any data in its data directory.

Note: The broadcast_address defaults to the listen_address except when the ring is using the
Ec2MultiRegionSnitch.

cassandra.replayList=table

Allows restoring specific tables from an archived commit log.

http://www.datastax.com/dev/blog/pluggable-metrics-reporting-in-cassandra-2-0-2

Cassandra tools

260

cassandra.ring_delay_ms=ms

Defines the amount of time a node waits to hear from other nodes before formally joining the ring. (Default:
1000ms)

cassandra.rpc_port=port

Sets the port for the Thrift RPC service, which is used for client connections. (Default: 9160).

cassandra.ssl_storage_port=port

Sets the SSL port for encrypted communication. (Default: 7001)

cassandra.start_native_transport=true | false

Enables or disables the native transport server. See start_native_transport in cassandra.yaml. (Default:
true)

cassandra.start_rpc=true | false

Enables or disables the Thrift RPC server. (Default: true)

cassandra.storage_port=port

Sets the port for inter-node communication. (Default: 7000)

cassandra.triggers_dir=directory

Sets the default location for the triggers JARs.

cassandra.write_survey=true

Enables a tool sor testing new compaction and compression strategies. write_survey allows you to
experiment with different strategies and benchmark write performance differences without affecting the
production workload. See Testing compaction and compression on page 180.

consistent.rangemovement=true

Set to true, makes bootstrapping behavior effective.

Example
Clearing gossip state when starting a node:

• Command line: $ bin/cassandra -Dcassandra.load_ring_state=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

Example
Starting a Cassandra node without joining the ring:

• Command line: bin/cassandra -Dcassandra.join_ring=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.join_ring=false"

Example
Replacing a dead node:

• Command line: bin/cassandra -Dcassandra.replace_address=10.91.176.160
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=10.91.176.160"

The cassandra-stress tool
A Java-based stress testing utility for basic benchmarking and load testing a Cassandra cluster.

The cassandra-stress tool is a Java-based stress testing utility for basic benchmarking and load
testing a Cassandra cluster.

Cassandra tools

261

Data modeling choices can greatly affect application performance. Significant load testing over several
trials is the best method for discovering issues with a particular data model. The cassandra-stress tool
is an effective tool for populating a cluster and stress testing CQL tables and queries. Use cassandra-
stress to:

• Quickly determine how a schema performs.
• Understand how your database scales.
• Optimize your data model and settings.
• Determine production capacity.

The cassandra-stress tool also supports a YAML-based profile for defining specific schemas with
various compaction strategies, cache settings, and types. Sample files are located in :

• Package installations: /usr/share/docs/cassandra/examples
• Tarball installations: install_location/tools/

The YAML file supports user-defined keyspace, tables, and schema. The YAML file can be used to design
tests of reads, writes, and mixed workloads.

When started without a YAML file, cassandra-stress creates a keyspace, keyspace1, and tables,
standard1 or counter1, depending on what type of table is being tested. These elements are
automatically created the first time you run a stress test and reused on subsequent runs. You can drop
keyspace1 using DROP KEYSPACE. You cannot change the default keyspace and tables names without
using a YAML file.

Usage:

• Package installations:

$ cassandra-stress command [options]
• Tarball installations:

$ cd install_location/tools
$ bin/cassandra-stress command [options]

cassandra-stress options

Command Description

counter_readMultiple concurrent reads of counters. The cluster must first be populated by a
counter_write test.

counter_writeMultiple concurrent updates of counters.

help Display help: cassandra-stress help

Display help for an option: cassandra-stress help [options] For example:
cassandra-stress help -schema

legacy Legacy support mode.

mixed Interleave basic commands with configurable ratio and distribution. The cluster must first
be populated by a write test.

print Inspect the output of a distribution definition.

read Multiple concurrent reads. The cluster must first be populated by a write test.

user Interleave user provided queries with configurable ratio and distribution.

write Multiple concurrent writes against the cluster.

Important: Additional sub-options are available for each option in the following table. To get more detailed
information on any of these, enter:

/en/cql/3.3/cql/cql_reference/drop_keyspace_r.html

Cassandra tools

262

$ cassandra-stress help option

When entering the help command, be sure to precede the option name with a hyphen, as shown.

Cassandra-stress sub-options

Sub-
option

Description

-
col

Column details, such as size and count distribution, data generator, names, and comparator.

Usage:

-col names=? [slice] [super=?] [comparator=?] [timestamp=?]
 [size=DIST(?)]
 or
-col [n=DIST(?)] [slice] [super=?] [comparator=?] [timestamp=?]
 [size=DIST(?)]

-
errors

How to handle errors when encountered during stress testing.

Usage:

-errors [retries=?] [ignore]

-
graph

Graph results of cassandra-stress tests. Multiple tests can be graphed together.

Usage:

-graph file=? [revision=?] [title=?] [op=?]

-
insert

Insert specific options relating to various methods for batching and splitting partition updates.

Usage:

-insert [revisit=DIST(?)] [visits=DIST(?)] partitions=DIST(?)
 [batchtype=?] select-ratio=DIST(?) row-population-ratio=DIST(?)

-
log

Where to log progress and the interval to use.

Usage:

-log [level=?] [no-summary] [file=?] [interval=?]

-
mode

Thrift or CQL with options.

Usage:

-mode thrift [smart] [user=?] [password=?]
 or
-mode native [unprepared] cql3 [compression=?] [port=?] [user=?]
 [password=?] [auth-provider=?] [maxPending=?] [connectionsPerHost=?]
 or
-mode simplenative [prepared] cql3 [port=?]

-
node

Nodes to connect to.

Usage:

-node [whitelist] [file=?]

-
pop

Population distribution and intra-partition visit order.

Cassandra tools

263

Sub-
option

Description

Usage:

-pop seq=? [no-wrap] [read-lookback=DIST(?)] [contents=?]
 or
-pop [dist=DIST(?)] [contents=?]

-
port

Specify port for connecting Cassandra nodes. Port can be specified for Cassandra native protocol,
Thrift protocol or a JMX port for retrieving statistics.

Usage:

-port [native=?] [thrift=?] [jmx=?]

-
rate

Thread count, rate limit, or automatic mode (default is auto).

Usage:

-rate threads=? [limit=?]
 or
-rate [threads>=?] [threads<=?] [auto]

-
sample

Specify the number of samples to collect for measuring latency.

Usage:

-sample [history=?] [live=?] [report=?]

-
schema

Replication settings, compression, compaction, and so on.

Usage:

-schema [replication(?)] [keyspace=?] [compaction(?)] [compression=?]

-
sendto

Specify a stress server to send this command to.

Usage:

-sendToDaemon <host>

-
transport

Custom transport factories.

Usage:

-transport [factory=?] [truststore=?] [truststore-password=?] [ssl-
protocol=?] [ssl-alg=?] [store-type=?] [ssl-ciphers=?]

Additional command-line parameters can modify how cassandra-stress runs:

Additional cassandra-stress parameters

Command Description

cl=? Set the consistency level to use during cassandra-stress. Options are ONE,
QUORUM, LOCAL_QUORUM, EACH_QUORUM, ALL, and ANY. Default is
LOCAL_ONE.

clustering=DIST(?)Distribution clustering runs of operations of the same kind.

duration=? Specify the time to run, in seconds, minutes or hours.

Cassandra tools

264

Command Description

err<? Specify a standard error of the mean; when this value is reached, cassandra-stress
will end. Default is 0.02.

n>? Specify a minimum number of iterations to run before accepting uncertainly convergence.

n<? Specify a maximum number of iterations to run before accepting uncertainly convergence.

n=? Specify the number of operations to run.

no-warmup Do not warmup the process, do a cold start.

ops(?) Specify what operations to run and the number of each. (only with the user option)

profile=? Designate the YAML file to use with cassandra-stress. (only with the user option)

truncate=? Truncate the table created during cassandra-stress. Options are never, once, or
always. Default is never.

Simple read and write examples
Insert (write) one million rows
$ cassandra-stress write n=1000000 -rate threads=50

Read two hundred thousand rows.
$ cassandra-stress read n=200000 -rate threads=50

Read rows for a duration of 3 minutes.
$ cassandra-stress read duration=3m -rate threads=50

Read 200,000 rows without a warmup of 50,000 rows first.
$ cassandra-stress read n=200000 no-warmup -rate threads=50

View schema help
$ cassandra-stress help -schema

replication([strategy=?][factor=?][<option 1..N>=?]): Define
 the replication strategy and any parameters
 strategy=? (default=org.apache.cassandra.locator.SimpleStrategy) The
 replication strategy to use
 factor=? (default=1) The
 number of replicas
keyspace=? (default=keyspace1) The
 keyspace name to use
compaction([strategy=?][<option 1..N>=?]): Define
 the compaction strategy and any parameters
 strategy=? The
 compaction strategy to use
compression=?
 Specify the compression to use for SSTable, default:no compression

Populate the database
Generally it is easier to let cassandra-stress create the basic schema and then modify it in CQL:

#Load one row with default schema
$ cassandra-stress write n=1 cl=one -mode native cql3 -log
 file=create_schema.log

/en/cql/3.3/cql/cqlIntro.html

Cassandra tools

265

#Modify schema in CQL
$ cqlsh

#Run a real write workload
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema
 keyspace="keyspace1" -log file=load_1M_rows.log

Change the replication strategy
Changes the replication strategy to NetworkTopologyStrategy and targets one node named
existing.

$ cassandra-stress write n=500000 no-warmup -node existing -schema
 "replication(strategy=NetworkTopologyStrategy, existing=2)"

Run a mixed workload
When running a mixed workload, you must escape parentheses, greater-than and less-than signs, and
other such things. This example invokes a workload that is one-quarter writes and three-quarters reads.

$ cassandra-stress mixed ratio\(write=1,read=3\) n=100000 cl=ONE -pop
 dist=UNIFORM\(1..1000000\) -schema keyspace="keyspace1" -mode native cql3 -
rate threads\>=16 threads\<=256 -log file=~/mixed_autorate_50r50w_1M.log

Notice the following in this example:

1. The ratio parameter requires backslash-escaped parenthesis.
2. The value of n used in the read phase is different from the value used in write phase. During the write

phase, n records are written. However in the read phase, if n is too large, it is inconvenient to read
all the records for simple testing. Generally, n does not need be large when validating the persistent
storage systems of a cluster.

The -pop dist=UNIFORM\(1..1000000\) portion says that of the n=100,000 operations, select the
keys uniformly distributed between 1 and 1,000,000. Use this when you want to specify more data per
node than what fits in DRAM.

3. In the rate section, the greater-than and less-than signs are escaped. If not escaped, the shell
attempts to use them for IO redirection: the shell tries to read from a non-existent file called =256 and
create a file called =16. The rate section tells cassandra-stress to automatically attempt different
numbers of client threads and not test less that 16 or more than 256 client threads.

Standard mixed read/write workload keyspace for a single
node
CREATE KEYSPACE "keyspace1" WITH replication = {
 'class': 'SimpleStrategy',
 'replication_factor': '1'
};
USE "keyspace1";
CREATE TABLE "standard1" (
 key blob,
 "C0" blob,
 "C1" blob,
 "C2" blob,
 "C3" blob,
 "C4" blob,
 PRIMARY KEY (key)
) WITH

Cassandra tools

266

 bloom_filter_fp_chance=0.010000 AND
 caching='KEYS_ONLY' AND
 comment='' AND
 dclocal_read_repair_chance=0.000000 AND
 gc_grace_seconds=864000 AND
 index_interval=128 AND
 read_repair_chance=0.100000 AND
 replicate_on_write='true' AND
 default_time_to_live=0 AND
 speculative_retry='99.0PERCENTILE' AND
 memtable_flush_period_in_ms=0 AND
 compaction={'class': 'SizeTieredCompactionStrategy'} AND
 compression={'class': 'LZ4Compressor'};

Split up a load over multiple cassandra-stress instances on
different nodes
This example demonstrates loading into large clusters, where a single cassandra-stress load
generator node cannot saturate the cluster. In this example, $NODES is a variable whose value is a comma
delimited list of IP addresses such as 10.0.0.1, 10.0.0.2, and so on.

#On Node1
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema
 keyspace="keyspace1" -pop seq=1..1000000 -log file=~/node1_load.log -node
 $NODES

#On Node2
$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema
 keyspace="keyspace1" -pop seq=1000001..2000000 -log file=~/node2_load.log -
node $NODES

Run cassandra-stress with authentication
The following example shows using the -mode option to supply a username and password:

$ cassandra-stress -mode native cql3 user=cassandra password=cassandra no-
warmup cl=QUORUM

Note: Check the documentation of the transport option for SSL authentication.

Run cassandra-stress with authentication and SSL encryption
The following example shows using the -mode option to supply a username and password, and the -
transportation option for SSL parameters:

$ cassandra-stress write n=100k cl=ONE no-warmup -mode native cql3
 user=cassandra password=cassandra
-transport truststore=/usr/local/lib/dsc-cassandra/conf/server-truststore.jks
 truststore-password=truststorePass
factory=org.apache.cassandra.thrift.SSLTransportFactory
keystore=/usr/local/lib/dsc-cassandra/conf/server-keystore.jks keystore-
password=myKeyPass

Note: Cassandra authentication and SSL encryption must already be configured before executing
cassandra-stress with these options. The example shown above uses self-signed CA certificates.

Cassandra tools

267

Run cassandra-stress using the truncate option
This option must be inserted before the mode option, otherwise the cassandra-stress tool won't apply
truncation as specified.

The following example shows the truncate command:

$cassandra-stress write n=100000000 cl=QUORUM truncate=always -schema
 keyspace=keyspace-rate threads=200 -log file=write_$NOW.log

Use a YAML file to run cassandra-stress
This example uses a YAML file named cqlstress-example.yaml, which contains the keyspace and
table definitions, and a query definition. The keyspace name and definition are the first entries in the YAML
file:

keyspace: perftesting

keyspace_definition:

 CREATE KEYSPACE perftesting WITH replication = { 'class':
 'SimpleStrategy', 'replication_factor': 3};

The table name and definition are created in the next section using CQL:

table: users

table_definition:

 CREATE TABLE users (
 username text,
 first_name text,
 last_name text,
 password text,
 email text,
 last_access timeuuid,
 PRIMARY KEY(username)
);

In the extra_definitions section you can add secondary indexes or materialized views to the table:

extra_definitions:
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name AS SELECT *
 FROM perftesting.users WHERE first_name IS NOT NULL and username IS NOT
 NULL PRIMARY KEY (first_name, username);
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name2 AS SELECT *
 FROM perftesting.users WHERE first_name IS NOT NULL and username IS NOT
 NULL PRIMARY KEY (first_name, username);
 - CREATE MATERIALIZED VIEW perftesting.users_by_first_name3 AS SELECT *
 FROM perftesting.users WHERE first_name IS NOT NULL and username IS NOT
 NULL PRIMARY KEY (first_name, username);

The population distribution can be defined for any column in the table. This section specifies a uniform
distribution between 10 and 30 characters for username values in gnerated rows, that the values in
the generated rows willcreates , a uniform distribution between 20 and 40 characters for generated

Cassandra tools

268

startdate over the entire Cassandra cluster, and a Gaussian distribution between 100 and 500
characters for description values.

columnspec:
 - name: username
 size: uniform(10..30)
 - name: first_name
 size: fixed(16)
 - name: last_name
 size: uniform(1..32)
 - name: password
 size: fixed(80) # sha-512
 - name: email
 size: uniform(16..50)
 - name: startdate
 cluster: uniform(20...40)
 - name: description
 size: gaussian(100...500)

After the column specifications, you can add specifications for how each batch runs. In the following code,
the partitions value directs the test to use the column definitions above to insert a fixed number of rows
in the partition in each batch:

insert:
 partitions: fixed(10)
 batchtype: UNLOGGED

The last section contains a query, read1, that can be run against the defined table.

queries:
 read1:
 cql: select * from users where username = ? and startdate = ?
 fields: samerow # samerow or multirow (select arguments from the
 same row, or randomly from all rows in the partition)

The following example shows using the user option and its parameters to run cassandra-stress tests
from cqlstress-example.yaml:

$ cassandra-stress user profile=tools/cqlstress-example.yaml n=1000000 ops
\(insert=3,read1=1\) no-warmup cl=QUORUM

Notice that:

• The user option is required for the profile and opt parameters.
• The value for the profile parameter is the path and filename of the .yaml file.
• In this example, -n specifies the number of batches that run.
• The values supplied for ops specifies which operations run and how many of each. These values direct

the command to insert rows into the database and run the read1 query.

How many times? Each insert or query counts as one batch, and the values in ops determine how
many of each type are run. Since the total number of batches is 1,000,000, and ops says to run three
inserts for each query, the result will be 750,000 inserts and 250,000 of the read1 query.

Use escaping backslashes when specifying the ops value.

For more information, see Improved Cassandra 2.1 Stress Tool: Benchmark Any Schema – Part 1.

http://www.datastax.com/dev/blog/improved-cassandra-2-1-stress-tool-benchmark-any-schema

Cassandra tools

269

Use the -graph option
In Cassandra 3.2 and later, the -graph option provides visual feedback for cassandra-stress tests. A
file must be named to build the resulting HTML file. A title and revision are optional, but revision
must be used if multiple stress tests are graphed on the same output.

$ cassandra-stress user profile=tools/cqlstress-example.yaml ops\(insert=1\) -
graph file=test.html title=test revision=test1

An interactive graph can be displayed with a web browser:

Interpreting the output of cassandra-stress
About the output from the running tests.

Each line reports data for the interval between the last elapsed time and current elapsed time.

Created keyspaces. Sleeping 1s for propagation.
 Sleeping 2s...
 Warming up WRITE with 50000 iterations...
 Running WRITE with 200 threads for 1000000 iteration
 type total ops, op/s, pk/s, row/s, mean, med,
 .95, .99, .999, max, time, stderr, errors, gc: #, max ms,
 sum ms, sdv ms, mb
 total, 43148, 42991, 42991, 42991, 4.6, 1.5,
 10.9, 106.1, 239.3, 255.4, 1.0, 0.00000, 0, 1, 49,
 49, 0, 612
 total, 98715, 43857, 43857, 43857, 4.6, 1.7,
 8.5, 98.6, 204.6, 264.5, 2.3, 0.00705, 0, 1, 45,
 45, 0, 619
 total, 157777, 47283, 47283, 47283, 4.1, 1.4,
 8.3, 70.6, 251.7, 286.3, 3.5, 0.02393, 0, 1, 59,
 59, 0, 611

 Results:

Cassandra tools

270

 op rate : 46751 [WRITE:46751]
 partition rate : 46751 [WRITE:46751]
 row rate : 46751 [WRITE:46751]
 latency mean : 4.3 [WRITE:4.3]
 latency median : 1.3 [WRITE:1.3]
 latency 95th percentile : 7.2 [WRITE:7.2]
 latency 99th percentile : 60.5 [WRITE:60.5]
 latency 99.9th percentile : 223.2 [WRITE:223.2]
 latency max : 503.1 [WRITE:503.1]
 Total partitions : 1000000 [WRITE:1000000]
 Total errors : 0 [WRITE:0]
 total gc count : 18
 total gc mb : 10742
 total gc time (s) : 1
 avg gc time(ms) : 73
 stdev gc time(ms) : 16
 Total operation time : 00:00:21

 END

Table: Output of cassandra-stress

Data Description

total ops Running total number of operations during the run.

op/s Number of operations per second performed during the run.

pk/s Number of partition operations per second performed during the run.

row/s Number of row operations per second performed during the run.

mean Average latency in milliseconds for each operation during that run.

med Median latency in milliseconds for each operation during that run.

.95 95% of the time the latency was less than the number displayed in the column.

.99 99% of the time the latency was less than the number displayed in the column.

.999 99.9% of the time the latency was less than the number displayed in the column.

max Maximum latency in milliseconds.

time Total operation time.

stderr Standard error of the mean. It is a measure of confidence in the average throughput
number; the smaller the number, the more accurate the measure of the cluster's
performance.

gc: # Number of garbage collections.

max ms Longest garbage collection in milliseconds.

sum ms Total of garbage collection in milliseconds.

sdv ms Standard deviation in milliseconds.

mb Size of the garbage collection in megabytes.

SSTable utilities
Tools for using, upgrading, and changing Cassandra SSTables.

Cassandra tools

271

sstabledump
Dump the contents of the specified SSTable in JSON format

This tool outputs the contents of the specified SSTable in the JSON format.

Depending on your task, you may wish to flush the table to disk (using nodetool flush)before dumping its
contents.

Usage:

• Package installations:

$ sstabledump [options] sstable_file
• Tarball installations:

$ cd install_location
$ bin/sstabledump [options] sstable_file

The file is located in the data directory and has a .db extension.

Table: Options

Flag Description

-d Outputs
an
internal
representation,
one
CQL
row per
line.

-e Limits
output
to the
list of
keys.

-k key Limits
output
to
information
about
the row
identified
by the
specified
key.

-xkey Excludes
information
about
the row
identified
by the
specified
key

Cassandra tools

272

Flag Description

from
output.

sstableexpiredblockers
The sstableexpiredblockers utility will reveal blocking SSTables that prevent an SSTable from dropping.

During compaction, Cassandra can drop entire SSTables if they contain only expired tombstones and if it
is guaranteed to not cover any data in other SSTables. This diagnostic tool outputs all SSTables that are
blocking other SSTables from being dropped.

Usage:

• Package installations: $ sstableexpiredblockers [--dry-run] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstableexpiredblockers [--dry-run] keyspace table

Procedure
Choose a keyspace and table to check for any SSTables that are blocking the specified table from
dropping.

$ sstableexpiredblockers cycling cyclist_name

What to do next

sstablekeys
The sstablekeys utility dumps table keys.

The sstablekeys utility dumps table keys.

Usage:

• Package installations: $ sstablekeys sstable_name
• Tarball installations:

$ cd install_location/tools
$ bin/sstablekeys sstable_name

Procedure
1. If data has not been previously flushed to disk, manually flush it. For example:

$ nodetool flush cycling cyclist_name

2. To list the keys in an SSTable, find the name of the SSTable file.

The file is located in the data directory and has a .db extension.

3. Look at keys in the SSTable data. For example, use sstablekeys followed by the path to the data.
Use the path to data for your Cassandra installation:

Package installations
$ sstablekeys /var/lib/cassandra/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

Cassandra tools

273

Tarball installations
$ sstablekeys install_location/data/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

The output appears, for example:

sstablelevelreset
The sstablelevelreset utility will reset the level to 0 on a given set of SSTables.

Reset level to 0 on a given set of SSTables that use LeveledCompactionStrategy.

Usage:

• Package installations: $ sstablelevelreset [--really-reset] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstablelevelreset [--really-reset] keyspace table

The option --really-reset is a warning that Cassandra is stopped before the tool is run.

Procedure
• Stop Cassandra on the node. Choose a keyspace and table to reset to level 0.

$ sstablelevelreset --really-reset cycling cyclist_name

If the designated table is already at level 0, then no change occurs. If the SSTable is releveled, the
metadata is rewritten to designate the level to 0.

Example

sstableloader (Cassandra bulk loader)
Provides the ability to bulk load external data into a cluster, load existing SSTables into another cluster with a different number of nodes or replication strategy, and restore snapshots.

The Cassandra bulk loader, also called the sstableloader, provides the ability to:

• Bulk load external data into a cluster.
• Load existing SSTables into another cluster with a different number of nodes or replication strategy.
• Restore snapshots.

The sstableloader streams a set of SSTable data files to a live cluster. It does not simply copy the
set of SSTables to every node, but transfers the relevant part of the data to each node, conforming to the
replication strategy of the cluster. The table into which the data is loaded does not need to be empty.

Run sstableloader from the directory containing the SSTables, passing it the location of the target
cluster.

Cassandra tools

274

Note: Bulkloading SSTables created in versions prior to Cassandra 3.0 is supported only in Cassandra
3.0.5 and later.

Note: Repairing tables that have been loaded into a different cluster does not repair the source tables.

Prerequisites
The source data loaded by sstableloader must be in SSTables.

Generating SSTables

When using sstableloader to load external data, you must first put the external data into SSTables.

Note: If using DataStax Enterprise, you can use Sqoop to migrate external data to Cassandra.

SSTableWriter is the API to create raw Cassandra data files locally for bulk load into your cluster. The
Cassandra source code includes the CQLSSTableWriter implementation for creating SSTable files from
external data without needing to understand the details of how those map to the underlying storage engine.
Import the org.apache.cassandra.io.sstable.CQLSSTableWriter class, and define the schema
for the data you want to import, a writer for the schema, and a prepared insert statement. For a complete
example, see http://www.datastax.com/dev/blog/using-the-cassandra-bulk-loader-updated.

Restoring Cassandra snapshots

For information about preparing snapshots for sstableloader import, see Restoring from centralized
backups.

Importing SSTables from an existing cluster

Before importing existing SSTables, run nodetool flush on each source node to assure that any data in
memtables is written out to the SSTables on disk.

Preparing the target environment

Before loading the data, you must define the schema of the target tables with CQL or Thrift.

Usage
Package installations:

$ sstableloader -d host_url (,host_url …) [options] path_to_keyspace

Tarball installations:

$ cd install_location/bin
$ sstableloader -d host_url (,host_url …) [options] path_to_keyspace

The sstableloader bulk loads the SSTables found in the keyspace directory to the configured target
cluster, where the parent directories of the directory path are used as the target keyspace/table name.

For more sstableloader options, see sstableloader options

Using sstableloader
1. If restoring snapshot data from some other source: make sure that the snapshot files are in a

keyspace/tablename directory path whose names match those of the target keyspace/
tablename. In this example, make sure the snapshot files are in /Keyspace/Standard1/.

2. Go to the location of the SSTables:

Package installations:

$ cd /var/lib/cassandra/data/Keyspace1/Standard1/

Tarball installations:

/en/datastax_enterprise/4.6/datastax_enterprise/ana/anaSqpAbt.html
http://www.datastax.com/dev/blog/using-the-cassandra-bulk-loader-updated
/en/cql/3.3/cql/cqlIntro.html

Cassandra tools

275

$ cd install_location/data/data/Keyspace1/Standard1/
3. To view the contents of the keyspace:

$ ls

Keyspace1-Standard1-jb-60-CRC.db
Keyspace1-Standard1-jb-60-Data.db
...
Keyspace1-Standard1-jb-60-TOC.txt

4. To bulk load the files, specify the path to Keyspace1/Standard1/ in the target cluster:

$ sstableloader -d 110.82.155.1 /var/lib/cassandra/data/Keyspace1/Standard1/
 ## Package installation

$ install_location/bin/sstableloader -d 110.82.155.1 /var/lib/cassandra/
data/data/Keyspace1/Standard1/ ## Tarball installation

This command bulk loads all files.

Note: To get the best throughput from SSTable loading, you can use multiple instances of sstableloader
to stream across multiple machines. No hard limit exists on the number of SSTables that sstableloader can
run at the same time, so you can add additional loaders until you see no further improvement.

Table: sstableloader options

Short option Long option Description

-alg --ssl-alg <ALGORITHM> Client SSL algorithm (default: SunX509).

-ap --auth-provider <auth
provider class name>

Allows the use of a third party auth provider. Can be
combined with -u <username> and -pw <password> if the
auth provider supports plain text credentials.

-ciphers --ssl-ciphers <CIPHER-
SUITES>

Client SSL. Comma-separated list of encryption suites.

-cph --connections-per-host
<connectionsPerHost>

Number of concurrent connections-per-host.

-d --nodes <initial_hosts> Required. Connect to a list of (comma separated) hosts for
initial cluster information.

-f --conf-path
<path_to_config_file>

Path to the cassandra.yaml path for streaming
throughput and client/server SSL.

-h --help Display help.

-i --ignore <NODES> Do not stream to this comma separated list of nodes.

-ks --keystore <KEYSTORE> Client SSL. Full path to the keystore.

-kspw --keystore-password
<KEYSTORE-PASSWORD>

Client SSL. Password for the keystore.

Overrides the client_encryption_options option in
cassandra.yaml

--no-progress Do not display progress.

-p --port <rpc port> RPC port (default: 9160 [Thrift]).

-prtcl --ssl-protocol
<PROTOCOL>

Client SSL. Connections protocol to use (default: TLS).

Cassandra tools

276

Short option Long option Description

Overrides the server_encryption_options option in
cassandra.yaml

-pw --password <password> Password for Cassandra authentication.

-st --store-type <STORE-
TYPE>

Client SSL. Type of store.

-t --throttle <throttle> Throttle speed in Mbits (default: unlimited).

Overrides the
stream_throughput_outbound_megabits_per_sec option in
cassandra.yaml

-tf --transport-factory <transport
factory>

Fully-qualified ITransportFactory class name for
creating a connection to Cassandra.

-ts --truststore
<TRUSTSTORE>

Client SSL. Full path to truststore.

-tspw --truststore-password
<TRUSTSTORE-
PASSWORD>

Client SSL. Password of the truststore.

-u --username <username> User name for Cassandra authentication.

-v --verbose Verbose output.

sstablemetadata
The sstablemetadata utility prints metadata about a specified SSTable.

The sstablemetadata utility prints metadata about a specified SSTable, including:

• SSTable name
• partitioner
• SSTable level (for Leveled Compaction only)
• number of tombstones and Dropped timestamps (in epoch time)
• number of cells and size (in bytes) per row

Use this report to troubleshoot wide rows or performance-degrading tombstones.

Procedure
1. Switch to the CASSANDRA_HOME directory.

2. Enter the command /tools/bin/sstablemetadata followed by the filenames of one or more
SSTables.

$ tools/bin/sstablemetadata <sstable_name filenames>

tools/bin/sstablemetadata data/data/autogeneratedtest/
transaction_by_retailer-f27e4d5078dc11e59d629d03f52e8a2b/ma-203-big-Data.db
SSTable: data/data/autogeneratedtest/transaction_by_retailer-
f27e4d5078dc11e59d629d03f52e8a2b/ma-203-big
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Bloom Filter FP chance: 0.010000
Minimum timestamp: 1445871871053006
Maximum timestamp: 1445871953354005
SSTable max local deletion time: 2147483647

Cassandra tools

277

Compression ratio: -1.0
Estimated droppable tombstones: 0.0
SSTable Level: 0
Repaired at: 0
ReplayPosition(segmentId=1445871179392, position=18397674)
Estimated tombstone drop times:
2147483647: 7816721
Count Row Size Cell Count
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
10 0 0
12 0 710611
14 0 0
17 0 0
20 0 0
24 0 0
29 0 0
35 0 0
42 0 0
50 0 0
60 0 0
72 0 0
86 0 0
103 0 0
124 0 0
149 0 0
179 0 0
215 0 0
258 0 0
310 81 0
372 710530 0
446 0 0
535 0 0
642 0 0
770 0 0
924 0 0
1109 0 0
1331 0 0
1597 0 0
1916 0 0
2299 0 0
2759 0 0
3311 0 0
3973 0 0
4768 0 0
5722 0 0
6866 0 0
8239 0 0
9887 0 0
11864 0 0
14237 0 0
17084 0 0
20501 0 0
24601 0 0
29521 0 0
35425 0 0
42510 0 0
51012 0 0

Cassandra tools

278

61214 0 0
73457 0 0
88148 0 0
105778 0 0
126934 0 0
152321 0 0
182785 0 0
219342 0 0
263210 0 0
315852 0 0
379022 0 0
454826 0 0
545791 0 0
654949 0 0
785939 0 0
943127 0 0
1131752 0 0
1358102 0 0
1629722 0 0
1955666 0 0
2346799 0 0
2816159 0 0
3379391 0 0
4055269 0 0
4866323 0 0
5839588 0 0
7007506 0 0
8409007 0 0
10090808 0 0
12108970 0 0
14530764 0 0
17436917 0 0
20924300 0 0
25109160 0 0
30130992 0 0
36157190 0 0
43388628 0 0
52066354 0 0
62479625 0 0
74975550 0 0
89970660 0 0
107964792 0 0
129557750 0 0
155469300 0 0
186563160 0 0
223875792 0 0
268650950 0 0
322381140 0 0
386857368 0 0
464228842 0 0
557074610 0 0
668489532 0 0
802187438 0 0
962624926 0 0
1155149911 0 0
1386179893 0 0
1663415872 0 0
1996099046 0 0
2395318855 0 0
2874382626 0
3449259151 0
4139110981 0
4966933177 0
5960319812 0

Cassandra tools

279

7152383774 0
8582860529 0
10299432635 0
12359319162 0
14831182994 0
17797419593 0
21356903512 0
25628284214 0
30753941057 0
36904729268 0
44285675122 0
53142810146 0
63771372175 0
76525646610 0
91830775932 0
110196931118 0
132236317342 0
158683580810 0
190420296972 0
228504356366 0
274205227639 0
329046273167 0
394855527800 0
473826633360 0
568591960032 0
682310352038 0
818772422446 0
982526906935 0
1179032288322 0
1414838745986 0
Estimated cardinality: 722835

sstableofflinerelevel
The sstableofflinerelevel utility will relevel SSTables.

This tool is intended to run in an offline fashion. When using the LevelledCompactionStrategy, it
is possible for the number of SSTables in level L0 to become excessively large, resulting in read latency
degrading. This is often the case when atypical write load is experienced (eg. bulk import of data, node
bootstrapping). This tool will relevel the SSTables in an optimal fashion. The --dry run flag can be used
to run in test mode and examine the tools results.

Usage:

• Package installations: $ sstableofflinerelevel [--dry-run] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstableofflinerelevel [--dry-run] keyspace table

Procedure
Choose a keyspace and table to relevel.

$ sstableofflinerelevel cycling cyclist_name

Cassandra tools

280

sstablerepairedset
The sstablerepairedset utility will reset the level to 0 on a given set of SSTables.

This tool is intended to mark specific SSTables as repaired or unrepaired. It is used to set the
repairedAt status on a given set of SSTables. This metadata facilitates incremental repairs. It can take
in the path to an individual SSTable or the path to a file containing a list of SSTables paths.

Warning: Do not run this command until you have stopped Cassandra on the node.

Use this tool in the process of migrating a Cassandra installation to incremental repair.

Usage:

• Package installations:

$ sstablerepairedset [--really-set] [--is-repaired | --is-unrepaired] [-
f sstable-list | sstables]

• Tarball installations:

$ cd install_location/tools
$ bin/sstablerepairedset [--really-set] [--is-repaired | --is-unrepaired] [-
f sstable-list | sstables]

Procedure
•
• Choose SSTables to mark as repaired.

$ sstablerepairedset --really-set --is-repaired data/data/cycling/
cyclist_name-a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

• Use a file to list the SSTable to mark as unrepaired.

$ /sstablerepairedset --is-unrepaired -f repairSetSSTables.txt

A file like repairSetSSTables.txt would contain a list of SSTable (.db) files, as in the following
example:

/data/data/cycling/cyclist_by_country-82246fc065ff11e5a4c58b496c707234/ma-1-
big-Data.db
/data/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/
ma-1-big-Data.db
/data/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/
ma-2-big-Data.db
/data/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-1-big-
Data.db
/data/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-2-big-
Data.db

Use the following command to list all the Data.db files in a keyspace:

find '/home/user/datastax-ddc-3.2.0/data/data/keyspace1/' -iname "*Data.db*"

sstablescrub
An offline version of nodetool scrub. It attempts to remove the corrupted parts while preserving non-corrupted data.

The sstablescrub utility is an offline version of nodetool scrub. It attempts to remove the corrupted
parts while preserving non-corrupted data. Because sstablescrub runs offline, it can correct errors that
nodetool scrub cannot. If an SSTable cannot be read due to corruption, it will be left on disk.

Cassandra tools

281

If scrubbing results in dropping rows, new SSTables become unrepaired. However, if no bad rows are
detected, the SSTable keeps its original repairedAt field, which denotes the time of the repair.

Procedure
1. Before using sstablescrub, try rebuilding the tables using nodetool scrub.

If nodetool scrub does not fix the problem, use this utility.

2. Shut down the node.

3. Run the utility:

• Package installations:

$ sstablescrub [options] keyspace table
• Tarball installations:

$ cd install_location
$ bin/sstablescrub [options] keyspace table

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

-m --manifest-check Only check and repair the leveled manifest, without actually scrubbing
the SSTables.

-s --skip-corrupted Skip corrupt rows in counter tables.

-v --verbose Verbose output.

sstablesplit
Use this tool to split SSTables files into multiple SSTables of a maximum designated size.

Use this tool to split SSTables files into multiple SSTables of a maximum designated size. For example,
if SizeTieredCompactionStrategy was used for a major compaction and results in a excessively large
SSTable, it's a good idea to split the table because won't get compacted again until the next huge
compaction.

Cassandra must be stopped to use this tool:

• Package installations:

$ sudo service cassandra stop
• Tarball installations:

$ ps auwx | grep cassandra
$ sudo kill pid

Usage:

• Package installations: $ sstablesplit [options] <filename> [<filename>]*
• Tarball installations:

$ cd install_location/tools/bin
sstablesplit [options] <filename> [<filename>]*

Example:

Cassandra tools

282

$ sstablesplit -s 40 /var/lib/cassandra/data/data/Keyspace1/Standard1/*

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

--no-snapshot Do not snapshot the SSTables before splitting.

-s --size <size> Maximum size in MB for the output SSTables (default: 50).

-v --verbose Verbose output.

sstableupgrade
Upgrade the SSTables in the specified table or snapshot to match the currently installed version of Cassandra.

This tool rewrites the SSTables in the specified table to match the currently installed version of Cassandra.

If restoring with sstableloader, you must upgrade your snapshots before restoring for any snapshot taken in
a major version older than the major version that Cassandra is currently running.

Usage:

• Package installations:

$ sstableupgrade [options] keyspace table [snapshot]
• Tarball installations:

$ cd install_location
$ bin/sstableupgrade [options] keyspace table [snapshot]

The snapshot option only upgrades the specified snapshot.

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

sstableutil
The sstableutil utility will list the SSTable files for a provided table.

The sstableutil will list the SSTable files for a provided table.

Usage:

• Package installations: $ sstableutil [--cleanup | --debug | --help | --opslog | --
type <arg> | --verbose] keyspace | table

• Tarball installations:

$ cd install_location$ bin/sstableutil [--cleanup | --debug | --help | --
opslog | --type <arg> | --verbose] keyspace | table

Note: Arguments for --type option are: all, tmp, or final.

Troubleshooting

283

Procedure
Choose a table fof which to list SSTables files.

$ sstableutil --all cycling cyclist_name

sstableverify
The sstableverify utility will verify the SSTable for a provided table.

The sstableverify utility will verify the SSTable for a provided table and look for errors or data corruption.

Usage:

• Package installations: $ sstableverify [--debug | --extended | --help | --verbose]
keyspace | table

• Tarball installations:

$ cd install_location$ bin/sstableverify [--debug | --extended | --help | --
verbose] keyspace | table

Procedure
Choose a table to verify.

$ sstableverify --verbose cycling cyclist_name

Troubleshooting

Troubleshooting has moved to Troubleshooting for both Cassandra and DataStax Enterprise.

DataStax Distribution of Apache Cassandra 3.x
release notes

Release notes for the DataStax Distribution of Apache Cassandra 3.x.

Note: Cassandra is now releasing on a tick-tock schedule.

The latest version of DataStax Distribution of Apache Cassandra 3.x is 3.9.

The CHANGES.txt describes the changes in detail. You can view all version changes by branch or tag in
the drop-down list on the changes page.

New features, improvements, and notable changes are described in What's new?.

/en/landing_page/doc/landing_page/troubleshooting/cassandra/cassandraTrblTOC.html
https://github.com/apache/cassandra/blob/cassandra-3.6/CHANGES.txt#L1-L113

	Contents
	About Apache Cassandra
	What's new?

	Understanding the architecture
	Architecture in brief
	Internode communications (gossip)
	Failure detection and recovery

	Data distribution and replication
	Consistent hashing
	Virtual nodes
	How data is distributed across a cluster (using virtual nodes)

	Data replication

	Partitioners
	Murmur3Partitioner
	RandomPartitioner
	ByteOrderedPartitioner

	Snitches
	Dynamic snitching
	SimpleSnitch
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	Ec2Snitch
	Ec2MultiRegionSnitch
	GoogleCloudSnitch
	CloudstackSnitch

	Database internals
	Storage engine
	How Cassandra reads and writes data
	How is data written?
	How is data maintained?
	How is data updated?
	How is data deleted?
	How are indexes stored and updated?
	How is data read?
	How do write patterns affect reads?

	Data consistency
	How are consistent read and write operations handled?
	How are Cassandra transactions different from RDBMS transactions?
	How do I accomplish lightweight transactions with linearizable consistency?
	How do I discover consistency level performance?
	How is the consistency level configured?
	How is the serial consistency level configured?
	How are read requests accomplished?
	Examples of read consistency levels

	How are write requests accomplished?
	Multiple datacenter write requests

	Planning a cluster deployment
	Installing
	Installing the DataStax Distribution of Apache Cassandra 3.x on RHEL-based systems
	Installing DataStax Distribution of Apache Cassandra 3.x on Debian-based systems
	Installing from the binary tarball
	Configuring Cassandra without root permissions

	Installing earlier releases of DataStax Distribution of Apache Cassandra 3.x
	Uninstalling DataStax Distribution of Apache Cassandra 3.x
	Installing on cloud providers
	Installing the JDK
	Installing Oracle JDK on RHEL-based Systems
	Installing Oracle JDK on Debian or Ubuntu Systems
	Installing OpenJDK on RHEL-based Systems
	Installing OpenJDK on Debian-based Systems

	Recommended production settings for Linux and Windows
	Install locations
	Tarball installation directories
	Package installation directories

	Configuration
	cassandra.yaml configuration file
	Cassandra include file
	Security
	Securing Cassandra
	Internal authentication
	About Internal authentication
	Configuring authentication
	Using cqlsh with authentication

	Internal authorization
	Object permissions
	Configuring internal authorization

	JMX authentication and authorization
	JMX Authentication and Authorization
	Enabling JMX authentication and authorization
	Using nodetool with authentication
	Using jconsole with authentication

	SSL encryption
	Encrypting Cassandra with SSL
	Installing Java Cryptography Extension (JCE) Files
	Preparing server certificates for development
	Preparing SSL certificates for production
	Node-to-node encryption
	Client-to-node encryption
	Using cqlsh with SSL
	Using nodetool (JMX) with SSL encryption
	Using jconsole (JMX) with SSL encryption

	Configuring firewall port access

	Configuring gossip settings
	Configuring the heap dump directory
	Configuring virtual nodes
	Enabling virtual nodes on a new cluster
	Enabling virtual nodes on an existing production cluster

	Using multiple network interfaces
	Configuring logging
	Commit log archive configuration
	Generating tokens
	Hadoop support

	Initializing a cluster
	Initializing a multiple node cluster (single datacenter)
	Initializing a multiple node cluster (multiple datacenters)
	Starting and stopping Cassandra
	Starting Cassandra as a service
	Starting Cassandra as a stand-alone process
	Stopping Cassandra as a service
	Stopping Cassandra as a stand-alone process
	Clearing the data as a service
	Clearing the data as a stand-alone process

	Operations
	Adding or removing nodes, datacenters, or clusters
	Adding nodes to an existing cluster
	Adding a datacenter to a cluster
	Replacing a dead node or dead seed node
	Replacing a running node
	Using nodetool to replace a running node

	Moving a node from one rack to another
	Decommissioning a datacenter
	Removing a node
	Switching snitches
	Changing keyspace replication strategy
	Edge cases for transitioning or migrating a cluster
	Adding single-token nodes to a cluster
	Adding a datacenter to a single-token architecture cluster
	Replacing a dead node in a single-architecture cluster

	Backing up and restoring data
	About snapshots
	Taking a snapshot
	Deleting snapshot files
	Enabling incremental backups
	Restoring from a snapshot
	Restoring a snapshot into a new cluster
	Recovering from a single disk failure using JBOD

	Repairing nodes
	Hinted Handoff: repair during write path
	Read Repair: repair during read path
	Manual repair: Anti-entropy repair
	When to run anti-entropy repair

	Migrating to incremental repairs

	Monitoring Cassandra
	Monitoring a Cassandra cluster
	Compaction metrics
	Thread pool and read/write latency statistics
	Table statistics

	Tuning Java resources
	Data caching
	Configuring data caches
	Enabling and configuring caching
	Tips for efficient cache use

	Monitoring and adjusting caching

	Configuring memtable thresholds
	Configuring compaction
	Compression
	When to compress data
	Configuring compression

	Testing compaction and compression
	Tuning Bloom filters
	Moving data to or from other databases
	Purging gossip state on a node

	Cassandra tools
	The nodetool utility
	About the nodetool utility
	assassinate
	bootstrap
	cfhistograms
	cfstats
	cleanup
	clearsnapshot
	compact
	compactionhistory
	compactionstats
	decommission
	describecluster
	describering
	disableautocompaction
	disablebackup
	disablebinary
	disablegossip
	disablehandoff
	disablehintsfordc
	disablethrift
	drain
	enableautocompaction
	enablebackup
	enablebinary
	enablegossip
	enablehandoff
	enablehintsfordc
	enablethrift
	nodetool failuredetector
	flush
	gcstats
	getcompactionthreshold
	getcompactionthroughput
	getendpoints
	getlogginglevels
	getsstables
	getstreamthroughput
	gettimeout
	gettraceprobability
	gossipinfo
	help
	info
	invalidatecountercache
	invalidatekeycache
	invalidaterowcache
	join
	listsnapshots
	move
	netstats
	pausehandoff
	proxyhistograms
	rangekeysample
	rebuild
	rebuild_index
	refresh
	refreshsizeestimates
	reloadtriggers
	relocatesstables
	removenode
	repair
	replaybatchlog
	resetlocalschema
	resumehandoff
	ring
	scrub
	setcachecapacity
	setcachekeystosave
	setcompactionthreshold
	setcompactionthroughput
	sethintedhandoffthrottlekb
	setlogginglevel
	setstreamthroughput
	settimeout
	settraceprobability
	snapshot
	status
	statusbackup
	statusbinary
	statusgossip
	statushandoff
	statusthrift
	stop
	stopdaemon
	tablehistograms
	tablestats
	toppartitions
	tpstats
	truncatehints
	upgradesstables
	nodetool viewbuildstatus
	verify
	version

	The cassandra utility
	The cassandra-stress tool
	Interpreting the output of cassandra-stress

	SSTable utilities
	sstabledump
	sstableexpiredblockers
	sstablekeys
	sstablelevelreset
	sstableloader (Cassandra bulk loader)
	sstablemetadata
	sstableofflinerelevel
	sstablerepairedset
	sstablescrub
	sstablesplit
	sstableupgrade
	sstableutil
	sstableverify

	Troubleshooting
	Release notes

