
Cassandra

 i

Cassandra

 i

About the Tutorial

Cassandra is a distributed database from Apache that is highly scalable and

designed to manage very large amounts of structured data. It provides high

availability with no single point of failure.

The tutorial starts off with a basic introduction of Cassandra followed by its

architecture, installation, and important classes and interfaces. Thereafter, it

proceeds to cover how to perform operations such as create, alter, update, and

delete on keyspaces, tables, and indexes using CQLSH as well as Java API. The

tutorial also has dedicated chapters to explain the data types and collections

available in CQL and how to make use of user-defined data types.

Audience

This tutorial will be extremely useful for software professionals in particular who

aspire to learn the ropes of Cassandra and implement it in practice.

Prerequisites

It is an elementary tutorial and you can easily understand the concepts explained

here with a basic knowledge of Java programming. However, it will help if you

have some prior exposure to database concepts and any of the Linux flavors.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Cassandra

 ii

Table of Contents
About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

PART 1: CASSANDRA BASICS ... 1

1. Introduction .. 2
NoSQL Database .. 2
NoSQL vs. Relational Database .. 2
What is Apache Cassandra? .. 3
Features of Cassandra ... 3
History of Cassandra .. 4

2. Architecture .. 5
Data Replication in Cassandra ... 5
Components of Cassandra ... 6
Cassandra Query Language ... 7

3. Data Model ... 8
Cluster ... 8
Data Models of Cassandra and RDBMS ... 11

4. Installation .. 12
Pre-Installation Setup .. 12
Download Cassandra ... 15
Configure Cassandra .. 15
Start Cassandra .. 16
Programming Environment ... 16
Eclipse Environment .. 17
Maven Dependencies .. 18

5. Referenced API ... 21
Cluster ... 21
Cluster.Builder ... 21
Session ... 21

6. Cassandra cqlsh .. 23
Starting cqlsh ... 23
Cqlsh Commands ... 24

7. Shell Commands ... 26
HELP ... 26
CAPTURE .. 26
CONSISTENCY .. 27
COPY .. 27
DESCRIBE ... 28
DESCRIBE TYPE .. 29
DESCRIBE TYPES ... 30

Cassandra

 iii

Expand ... 30
EXIT .. 31
SHOW .. 32
SOURCE .. 32

PART 2: KEYSPACE OPERATIONS ... 33

8. Create KeySpace ... 34
Creating a Keyspace... 34
Replication ... 34
Durable_writes .. 35
Using a Keyspace ... 36
Creating a Keyspace using Java API ... 36

9. Alter KeySpace .. 40
Altering a KeySpace ... 40
Replication ... 40
Durable_writes .. 40
Altering a KeySpace using Java API .. 42

10. Drop KeySpace .. 45
Dropping a KeySpace ... 45
Dropping a KeySpace using Java API ... 45

PART 3: TABLE OPERATIONS ... 48

11. Create Table .. 49
Create a Table .. 49
Creating a Table using Java API ... 51

12. Alter Table .. 54
Altering a Table .. 54
Adding a Column ... 54
Dropping a Column .. 55
Altering a Table using Java API .. 55
Deleting a Column ... 58

13. Drop Table .. 59
Dropping a Table ... 59
Deleting a Table using Java API ... 59

14. Truncate Table .. 62
Truncating a Table ... 62
Truncating a Table using Java API .. 63

15. Create Index.. 66
Creating an Index ... 66
Creating an Index using Java API ... 66

16. Drop Index .. 69
Dropping an Index ... 69
Dropping an Index using Java API .. 69

Cassandra

 iv

17. Batch Statements .. 72
Using Batch Statements .. 72
Batch Statements using Java API ... 73

PART 4: CURD OPERATIONS .. 76

18. Create Data ... 77
Creating Data in a Table .. 77
Creating Data using Java API ... 78

19. Update Data.. 82
Updating Data in a Table ... 82
Updating Data using Java API .. 83

20. Read Data ... 86
Reading Data using Select Clause .. 86
Where Clause .. 87
Reading Data using Java API .. 88

21. Delete Data ... 91
Deleting Data from a Table .. 91
Deleting Data using Java API ... 92

PART 5: CQL TYPES .. 95

22. CQL Datatypes .. 97
Collection Types .. 98

23. CQL Collections ... 99
List ... 99
SET ... 100
MAP ... 101

24. CQL User-Defined Datatypes ... 103
Creating a User-defined Data Type ... 103
Altering a User-defined Data Type .. 104
Deleting a User-defined Data Type ... 105

Cassandra

 1

Part 1: Cassandra Basics

Cassandra

 2

Apache Cassandra is a highly scalable, high-performance distributed database

designed to handle large amounts of data across many commodity servers,

providing high availability with no single point of failure. It is a type of NoSQL

database. Let us first understand what a NoSQL database does.

NoSQL Database

A NoSQL database (sometimes called as Not Only SQL) is a database that provides

a mechanism to store and retrieve data other than the tabular relations used in

relational databases. These databases are schema-free, support easy replication,

have simple API, eventually consistent, and can handle huge amounts of data.

The primary objective of a NoSQL database is to have

 simplicity of design,

 horizontal scaling, and

 finer control over availability.

NoSql databases use different data structures compared to relational databases.

It makes some operations faster in NoSQL. The suitability of a given NoSQL

database depends on the problem it must solve.

NoSQL vs. Relational Database

The following table lists the points that differentiate a relational database from a

NoSQL database.

Relational Database NoSql Database

Supports powerful query language. Supports very simple query language.

It has a fixed schema. No fixed schema.

Follows ACID (Atomicity,

Consistency, Isolation, and
Durability).

It is only “eventually consistent”.

Supports transactions. Does not support transactions.

1. INTRODUCTION

Cassandra

 3

Besides Cassandra, we have the following NoSQL databases that are quite

popular:

● Apache HBase: HBase is an open source, non-relational, distributed

database modeled after Google’s BigTable and is written in Java. It is

developed as a part of Apache Hadoop project and runs on top of HDFS,

providing BigTable-like capabilities for Hadoop.

● MongoDB: MongoDB is a cross-platform document-oriented database

system that avoids using the traditional table-based relational database

structure in favor of JSON-like documents with dynamic schemas making

the integration of data in certain types of applications easier and faster.

What is Apache Cassandra?

Apache Cassandra is an open source, distributed and decentralized/distributed

storage system (database), for managing very large amounts of structured data
spread out across the world. It provides highly available service with no single
point of failure.

Listed below are some of the notable points of Apache Cassandra:

 It is scalable, fault-tolerant, and consistent.

 It is a key-value as well as a column-oriented database.

 Its distribution design is based on Amazon’s Dynamo and its data model

on Google’s Bigtable.

 Created at Facebook, it differs sharply from relational database

management systems.

 Cassandra implements a Dynamo-style replication model with no single

point of failure, but adds a more powerful “column family” data model.

 Cassandra is being used by some of the biggest companies such as

Facebook, Twitter, Cisco, Rackspace, ebay, Twitter, Netflix, and more.

Features of Cassandra

Cassandra has become so popular because of its outstanding technical features.

Given below are some of the features of Cassandra:

● Elastic scalability: Cassandra is highly scalable; it allows to add more

hardware to accommodate more customers and more data as per

requirement.

● Always on architecture: Cassandra has no single point of failure and it

is continuously available for business-critical applications that cannot

Cassandra

 4

afford a failure.

● Fast linear-scale performance: Cassandra is linearly scalable, i.e., it

increases your throughput as you increase the number of nodes in the

cluster. Therefore it maintains a quick response time.

● Flexible data storage: Cassandra accommodates all possible data

formats including: structured, semi-structured, and unstructured. It can

dynamically accommodate changes to your data structures according to

your need.

● Easy data distribution: Cassandra provides the flexibility to distribute

data where you need by replicating data across multiple datacenters.

● Transaction support: Cassandra supports properties like Atomicity,

Consistency, Isolation, and Durability (ACID).

● Fast writes: Cassandra was designed to run on cheap commodity

hardware. It performs blazingly fast writes and can store hundreds of

terabytes of data, without sacrificing the read efficiency.

History of Cassandra

 Cassandra was developed at Facebook for inbox search.

 It was open-sourced by Facebook in July 2008.

 Cassandra was accepted into Apache Incubator in March 2009.

 It was made an Apache top-level project since February 2010.

Cassandra

 5

The design goal of Cassandra is to handle big data workloads across multiple nodes

without any single point of failure. Cassandra has peer-to-peer distributed system

across its nodes, and data is distributed among all the nodes in a cluster.

 All the nodes in a cluster play the same role. Each node is independent and

at the same time interconnected to other nodes.

 Each node in a cluster can accept read and write requests, regardless of

where the data is actually located in the cluster.

 When a node goes down, read/write requests can be served from other

nodes in the network.

Data Replication in Cassandra

In Cassandra, one or more of the nodes in a cluster act as replicas for a given

piece of data. If it is detected that some of the nodes responded with an out-of-

date value, Cassandra will return the most recent value to the client. After

returning the most recent value, Cassandra performs a read repair in the

background to update the stale values.

The following figure shows a schematic view of how Cassandra uses data

replication among the nodes in a cluster to ensure no single point of failure.

2. ARCHITECTURE

Cassandra

 6

Note: Cassandra uses the Gossip Protocol in the background to allow the nodes

to communicate with each other and detect any faulty nodes in the cluster.

Components of Cassandra

The key components of Cassandra are as follows:

 Node: It is the place where data is stored.

 Data center: It is a collection of related nodes.

 Cluster: A cluster is a component that contains one or more data centers.

 Commit log: The commit log is a crash-recovery mechanism in Cassandra.

Every write operation is written to the commit log.

 Mem-table: A mem-table is a memory-resident data structure. After

commit log, the data will be written to the mem-table. Sometimes, for a

single-column family, there will be multiple mem-tables.

 SSTable: It is a disk file to which the data is flushed from the mem-table

when its contents reach a threshold value.

 Bloom filter: These are nothing but quick, nondeterministic, algorithms for

testing whether an element is a member of a set. It is a special kind of

cache. Bloom filters are accessed after every query.

Cassandra

 7

Cassandra Query Language

Users can access Cassandra through its nodes using Cassandra Query Language

(CQL). CQL treats the database (Keyspace) as a container of tables.

Programmers use cqlsh: a prompt to work with CQL or separate application

language drivers.

Clients approach any of the nodes for their read-write operations. That node

(coordinator) plays a proxy between the client and the nodes holding the data.

Write Operations

Every write activity of nodes is captured by the commit logs written in the nodes.

Later the data will be captured and stored in the mem-table. Whenever the mem-

table is full, data will be written into the SStable data file. All writes are

automatically partitioned and replicated throughout the cluster. Cassandra

periodically consolidates the SSTables, discarding unnecessary data.

Read Operations

During read operations, Cassandra gets values from the mem-table and checks

the bloom filter to find the appropriate SSTable that holds the required data.

Cassandra

 8

The data model of Cassandra is significantly different from what we normally see

in an RDBMS. This chapter provides an overview of how Cassandra stores its data.

Cluster

Cassandra database is distributed over several machines that operate together.

The outermost container is known as the Cluster. For failure handling, every node

contains a replica, and in case of a failure, the replica takes charge. Cassandra

arranges the nodes in a cluster, in a ring format, and assigns data to them.

Keyspace

Keyspace is the outermost container for data in Cassandra. The basic attributes

of a Keyspace in Cassandra are:

● Replication factor: It is the number of machines in the cluster that

will receive copies of the same data.

● Replica placement strategy: It is nothing but the strategy to place

replicas in the ring. We have strategies such as simple strategy (rack-

aware strategy), old network topology strategy (rack-aware strategy),

and network topology strategy (datacenter-shared strategy).

● Column families: Keyspace is a container for a list of one or more column

families. A column family, in turn, is a container of a collection of rows. Each

row contains ordered columns. Column families represent the structure of

your data. Each keyspace has at least one and often many column families.

The syntax of creating a Keyspace is as follows:

CREATE KEYSPACE Keyspace name
WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

3. DATA MODEL

Cassandra

 9

The following illustration shows a schematic view of a Keyspace.

Column Family

A column family is a container for an ordered collection of rows. Each row, in turn,

is an ordered collection of columns. The following table lists the points that

differentiate a column family from a table of relational databases.

Relational Table Cassandra Column Family

A schema in a relational model is fixed.
Once we define certain columns for a
table, while inserting data, in every row

all the columns must be filled at least
with a null value.

In Cassandra, although the column
families are defined, the columns are
not. You can freely add any column to

any column family at any time.

Relational tables define only columns

and the user fills in the table with
values.

In Cassandra, a table contains

columns, or can be defined as a
super column family.

A Cassandra column family has the following attributes:

 keys_cached It represents the number of locations to keep cached per

SSTable.

 rows_cached It represents the number of rows whose entire contents

will be cached in memory.

 preload_row_cache It specifies whether you want to pre-populate the

row cache.

Cassandra

 10

Note: Unlike relational tables where a column family’s schema is not fixed,

Cassandra does not force individual rows to have all the columns.

The following figure shows an example of a Cassandra column family.

Column

A column is the basic data structure of Cassandra with three values, namely key

or column name, value, and a time stamp. Given below is the structure of a

column.

Super Column

A super column is a special column, therefore, it is also a key-value pair. But a

super column stores a map of sub-columns.

Generally column families are stored on disk in individual files. Therefore, to

optimize performance, it is important to keep columns that you are likely to query

together in the same column family, and a super column can be helpful here.

Given below is the structure of a super column.

Cassandra

 11

Data Models of Cassandra and RDBMS

The following table lists down the points that differentiate the data model of

Cassandra from that of an RDBMS.

 RDBMS Cassandra

RDBMS deals with structured data. Cassandra deals with unstructured
data.

It has a fixed schema. Cassandra has a flexible schema.

In RDBMS, a table is an array of arrays.

(ROW x COLUMN)

In Cassandra, a table is a list of “nested
key-value pairs”.

(ROW x COLUMN key x COLUMN value)

Database is the outermost container
that contains data corresponding to an

application.

Keyspace is the outermost container
that contains data corresponding to an

application.

Tables are the entities of a database. Tables or column families are the entity

of a keyspace.

Row is an individual record in RDBMS. Row is a unit of replication in
Cassandra.

Column represents the attributes of a
relation.

Column is a unit of storage in
Cassandra.

RDBMS supports the concepts of
foreign keys, joins.

Relationships are represented using
collections.

Cassandra

 12

Cassandra can be accessed using cqlsh as well as drivers of different languages.

This chapter explains how to set up both cqlsh and java environments to work

with Cassandra.

Pre-Installation Setup

Before installing Cassandra in Linux environment, we require to set up Linux using

ssh (Secure Shell). Follow the steps given below for setting up Linux environment.

Create a User

At the beginning, it is recommended to create a separate user for Hadoop to isolate

Hadoop file system from Unix file system. Follow the steps given below to create

a user.

● Open root using the command “su”.

● Create a user from the root account using the command “useradd

username”.

● Now you can open an existing user account using the command “su

username”.

Open the Linux terminal and type the following commands to create a user.

$ su

password:

useradd hadoop

passwd hadoop

New passwd:

Retype new passwd

SSH Setup and Key Generation

SSH setup is required to perform different operations on a cluster such as starting,

stopping, and distributed daemon shell operations. To authenticate different users

of Hadoop, it is required to provide public/private key pair for a Hadoop user and

share it with different users.

The following commands are used for generating a key value pair using SSH:

 copy the public keys form id_rsa.pub to authorized_keys,

4. INSTALLATION

Cassandra

 13

 and provide owner,

 read and write permissions to authorized_keys file respectively.

$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys

 Verify ssh:

ssh localhost

Installing Java

Java is the main prerequisite for Cassandra. First of all, you should verify the

existence of Java in your system using the following command:

$ java -version

If everything works fine it will give you the following output.

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If you don’t have Java in your system, then follow the steps given below for

installing Java.

Step 1

Download java (JDK <latest version> - X64.tar.gz) from the following link:

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded onto your system.

Step 2

Generally you will find the downloaded java file in the Downloads folder. Verify it

and extract the jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

Cassandra

 14

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Step 3

To make Java available to all users, you have to move it to the location

“/usr/local/”. Open root, and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands to

~/.bashrc file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH= $PATH:$JAVA_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 5

Use the following commands to configure java alternatives.

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

Now use the java -version command from the terminal as explained above.

Setting the Path

Set the path of Cassandra path in “/.bahrc” as shown below.

Cassandra

 15

[hadoop@linux ~]$ gedit ~/.bashrc

export CASSANDRA_HOME=~/cassandra

export PATH=$PATH:$CASSANDRA_HOME/bin

Download Cassandra

Apache Cassandra is available at http://cassandra.apache.org/download/.

Download Cassandra using the following command.

$ wget http://supergsego.com/apache/cassandra/2.1.2/apache-cassandra-

2.1.2-bin.tar.gz

Unzip Cassandra using the command zxvf as shown below.

$ tar zxvf apache-cassandra-2.1.2-bin.tar.gz.

Create a new directory named cassandra and move the contents of the

downloaded file to it as shown below.

$ mkdir Cassandra

$ mv apache-cassandra-2.1.2/* cassandra.

Configure Cassandra

Open the cassandra.yaml: file, which will be available in the bin directory of

Cassandra.

$ gedit cassandra.yaml

Note: If you have installed Cassandra from a deb or rpm package, the

configuration files will be located in /etc/cassandra directory of Cassandra.

The above command opens the cassandra.yaml file. Verify the following

configurations. By default, these values will be set to the specified directories.

 data_file_directories “/var/lib/cassandra/data”

 commitlog_directory “/var/lib/cassandra/commitlog”

 saved_caches_directory “/var/lib/cassandra/saved_caches”

Make sure these directories exist and can be written to, as shown below.

Create Directories

As super-user, create the two directories /var/lib/cassandra and

/var./lib/cassandra into which Cassandra writes its data.

Cassandra

 16

[root@linux cassandra]# mkdir /var/lib/cassandra

[root@linux cassandra]# mkdir /var/log/cassandra

Give Permissions to Folders

Give read-write permissions to the newly created folders as shown below.

[root@linux /]# chmod 777 /var/lib/cassandra

[root@linux /]# chmod 777 /var/log/cassandra

Start Cassandra

To start Cassandra, open the terminal window, navigate to Cassandra home

directory/home, where you unpacked Cassandra, and run the following command

to start your Cassandra server.

$ cd $CASSANDRA_HOME

$./bin/cassandra -f

Using the –f option tells Cassandra to stay in the foreground instead of running as

a background process. If everything goes fine, you can see the Cassandra server

starting.

Programming Environment

To set up Cassandra programmatically, download the following jar files:

● slf4j-api-1.7.5.jar

● cassandra-driver-core-2.0.2.jar

● guava-16.0.1.jar

● metrics-core-3.0.2.jar

● netty-3.9.0.Final.jar

Place them in a separate folder. For example, we are downloading these jars to a

folder named “Cassandra_jars”.

Set the classpath for this folder in “.bashrc” file as shown below.

[hadoop@linux ~]$ gedit ~/.bashrc

//Set the following class path in the .bashrc file.

export CLASSPATH=$CLASSPATH:/home/hadoop/Cassandra_jars/*

Cassandra

 17

Eclipse Environment

Open Eclipse and create a new project called Cassandra _Examples.

Right click on the project, select Build Path-->Configure Build Path as shown

below.

It will open the properties window. Under Libraries tab, select Add External

JARs. Navigate to the directory where you saved your jar files. Select all the five

jar files and click OK as shown below.

Cassandra

 18

Under Referenced Libraries, you can see all the required jars added as shown

below.

Maven Dependencies

Given below is the pom.xml for building a Cassandra project using maven.

<build>

 <sourceDirectory>src</sourceDirectory>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.1</version>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

Cassandra

 19

 </plugin>

 </plugins>

</build>

<dependencies>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.5</version>

 </dependency>

 <dependency>

 <groupId>com.datastax.cassandra</groupId>

 <artifactId>cassandra-driver-core</artifactId>

 <version>2.0.2</version>

 </dependency>

 <dependency>

 <groupId>com.google.guava</groupId>

 <artifactId>guava</artifactId>

 <version>16.0.1</version>

 </dependency>

 <dependency>

 <groupId>com.codahale.metrics</groupId>

 <artifactId>metrics-core</artifactId>

 <version>3.0.2</version>

 </dependency>

 <dependency>

 <groupId>io.netty</groupId>

 <artifactId>netty</artifactId>

 <version>3.9.0.Final</version>

 </dependency>

Cassandra

 20

</dependencies>

</project>

Cassandra

 21

This chapter covers all the important classes in Cassandra.

Cluster

This class is the main entry point of the driver. It belongs to

com.datastax.driver.core package.

Methods

S. No. Methods and Description

1 Session connect()

It creates a new session on the current cluster and initializes it.

2 void close()

It is used to close the cluster instance.

3 static Cluster.Builder builder()

It is used to create a new Cluster.Builder instance.

Cluster.Builder

This class is used to instantiate the Cluster.Builder class.

Methods

S. No. Methods and Description

1 Cluster.Builder addContactPoint(String address)

This method adds a contact point to cluster.

2 Cluster build()

This method builds the cluster with the given contact points.

Session

This interface holds the connections to Cassandra cluster. Using this interface, you

can execute CQL queries. It belongs to com.datastax.driver.core package.

5. REFERENCED API

Cassandra

 22

Methods

S. No. Methods and Description

1 void close()

This method is used to close the current session instance.

2 ResultSet execute(Statement statement)

This method is used to execute a query. It requires a statement object.

3 ResultSet execute(String query)

This method is used to execute a query. It requires a query in the form of

a String object.

4 PreparedStatement prepare(RegularStatement statement)

This method prepares the provided query. The query is to be provided in
the form of a Statement.

5 PreparedStatement prepare(String query)

This method prepares the provided query. The query is to be provided in
the form of a String.

Cassandra

 23

This chapter introduces the Cassandra query language shell and explains how to

use its commands.

By default, Cassandra provides a prompt Cassandra query language shell (cqlsh)

that allows users to communicate with it. Using this shell, you can execute

Cassandra Query Language (CQL).

Using cqlsh, you can

● define a schema,

● insert data, and

● execute a query.

Starting cqlsh

Start cqlsh using the command cqlsh as shown below. It gives the Cassandra

cqlsh prompt as output.

[hadoop@linux bin]$ cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 2.1.2 | CQL spec 3.2.0 | Native protocol v3]

Use HELP for help.

cqlsh>

Cqlsh: As discussed above, this command is used to start the cqlsh prompt. In

addition, it supports a few more options as well. The following table explains all

the options of cqlsh and their usage.

Options Usage

cqlsh --help Shows help topics about the options of cqlsh commands.

cqlsh --version Provides the version of the cqlsh you are using.

cqlsh --color Directs the shell to use colored output.

cqlsh --debug Shows additional debugging information.

cqlsh --execute

cql_statement

Directs the shell to accept and execute a CQL command.

6. CASSANDRA CQLSH

Cassandra

 24

cqlsh --file= “file
name”

If you use this option, Cassandra executes the command
in the given file and exits.

cqlsh --no-color Directs Cassandra not to use colored output.

cqlsh -u “user
name”

Using this option, you can authenticate a user. The default
user name is: cassandra.

cqlsh-p “pass
word”

Using this option, you can authenticate a user with a
password. The default password is: cassandra.

Cqlsh Commands

Cqlsh has a few commands that allow users to interact with it. The commands are

listed below.

Documented Shell Commands

Given below are the Cqlsh documented shell commands. These are the commands

used to perform tasks such as displaying help topics, exit from cqlsh, describe,

etc.

 HELP: Displays help topics for all cqlsh commands.

 CAPTURE: Captures the output of a command and adds it to a file.

 CONSISTENCY: Shows the current consistency level, or sets a new

consistency level.

 COPY: Copies data to and from Cassandra.

 DESCRIBE: Describes the current cluster of Cassandra and its objects.

 EXPAND: Expands the output of a query vertically.

 EXIT: Using this command, you can terminate cqlsh.

 PAGING: Enables or disables query paging.

 SHOW: Displays the details of current cqlsh session such as Cassandra

version, host, or data type assumptions.

 SOURCE: Executes a file that contains CQL statements.

 TRACING: Enables or disables request tracing.

CQL Data Definition Commands

 CREATE KEYSPACE: Creates a KeySpace in Cassandra.

 USE: Connects to a created KeySpace.

 ALTER KEYSPACE: Changes the properties of a KeySpace.

 DROP KEYSPACE: Removes a KeySpace

 CREATE TABLE: Creates a table in a KeySpace.

 ALTER TABLE: Modifies the column properties of a table.

 DROP TABLE: Removes a table.

Cassandra

 25

 TRUNCATE: Removes all the data from a table.

 CREATE INDEX: Defines a new index on a single column of a table.

 DROP INDEX: Deletes a named index.

CQL Data Manipulation Commands

 INSERT: Adds columns for a row in a table.

 UPDATE: Updates a column of a row.

 DELETE: Deletes data from a table.

 BATCH: Executes multiple DML statements at once.

CQL Clauses

 SELECT: This clause reads data from a table.

 WHERE: The where clause is used along with select to read a specific data.

 ORDERBY: The orderby clause is used along with select to read a specific

data in a specific order.

Cassandra

 26

Cassandra provides documented shell commands in addition to CQL commands.

Given below are the Cassandra documented shell commands.

HELP

The HELP command displays a synopsis and a brief description of all cqlsh

commands. Given below is the usage of help command.

cqlsh> help

Documented shell commands:

===========================

CAPTURE COPY DESCRIBE EXPAND PAGING SOURCE

CONSISTENCY DESC EXIT HELP SHOW TRACING

CQL help topics:

================

ALTER CREATE_TABLE_OPTIONS SELECT

ALTER_ADD CREATE_TABLE_TYPES SELECT_COLUMNFAMILY

ALTER_ALTER CREATE_USER SELECT_EXPR

ALTER_DROP DELETE SELECT_LIMIT

ALTER_RENAME DELETE_COLUMNS SELECT_TABLE

CAPTURE

This command captures the output of a command and adds it to a file. For

example, take a look at the following code that captures the output to a file named

Outputfile.

cqlsh> CAPTURE '/home/hadoop/CassandraProgs/Outputfile'

When we type any command in the terminal, the output will be captured by the

file given. Given below is the command used and the snapshot of the output file.

cqlsh:tutorialspoint> select * from emp;

7. SHELL COMMANDS

Cassandra

 27

You can turn capturing off using the following command.

cqlsh:tutorialspoint> capture off;

CONSISTENCY

This command shows the current consistency level, or sets a new consistency

level.

cqlsh:tutorialspoint> CONSISTENCY

Current consistency level is 1.

COPY

This command copies data to and from Cassandra to a file. Given below is an

example to copy the table named emp to the file myfile.

cqlsh:tutorialspoint> COPY emp (emp_id, emp_city, emp_name, emp_phone,

emp_sal) TO ‘myfile’;

4 rows exported in 0.034 seconds.

If you open and verify the file given, you can find the copied data as shown below.

Cassandra

 28

DESCRIBE

This command describes the current cluster of Cassandra and its objects. The

variants of this command are explained below.

Describe cluster: This command provides information about the cluster.

cqlsh:tutorialspoint> describe cluster;

Cluster: Test Cluster

Partitioner: Murmur3Partitioner

Range ownership:

 -658380912249644557 [127.0.0.1]

 -2833890865268921414 [127.0.0.1]

 -6792159006375935836 [127.0.0.1]

Describe Keyspaces: This command lists all the keyspaces in a cluster. Given

below is the usage of this command.

cqlsh:tutorialspoint> describe keyspaces;

system_traces system tp tutorialspoint

Describe tables: This command lists all the tables in a keyspace. Given below is

the usage of this command.

Cassandra

 29

cqlsh:tutorialspoint> describe tables;

emp

Describe table: This command provides the description of a table. Given below

is the usage of this command.

cqlsh:tutorialspoint> describe table emp;

CREATE TABLE tutorialspoint.emp (

 emp_id int PRIMARY KEY,

 emp_city text,

 emp_name text,

 emp_phone varint,

 emp_sal varint

) WITH bloom_filter_fp_chance = 0.01

 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'

 AND comment = ''

 AND compaction = {'min_threshold': '4', 'class':

 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy',

 'max_threshold': '32'}

 AND compression = {'sstable_compression':

 'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99.0PERCENTILE';

CREATE INDEX emp_emp_sal_idx ON tutorialspoint.emp (emp_sal);

DESCRIBE TYPE

This command is used to describe a user-defined data type. Given below is the

usage of this command.

Cassandra

 30

cqlsh:tutorialspoint> describe type card_details;

CREATE TYPE tutorialspoint.card_details (

 num int,

 pin int,

 name text,

 cvv int,

 phone set<int>,

 mail text

);

DESCRIBE TYPES

This command lists all the user-defined data types. Given below is the usage of

this command. Assume there are two user-defined data types: card and

card_details.

cqlsh:tutorialspoint> DESCRIBE TYPES;

card_details card

Expand

This command is used to expand the output. Before using this command, you have

to turn the expand command on. Given below is the usage of this command.

cqlsh:tutorialspoint> expand on;

cqlsh:tutorialspoint> select * from emp;

@ Row 1

-----------+------------

 emp_id | 1

 emp_city | Hyderabad

 emp_name | ram

 emp_phone | 9848022338

 emp_sal | 50000

Cassandra

 31

@ Row 2

-----------+------------

 emp_id | 2

 emp_city | Delhi

 emp_name | robin

 emp_phone | 9848022339

 emp_sal | 50000

@ Row 3

-----------+------------

 emp_id | 4

 emp_city | Pune

 emp_name | rajeev

 emp_phone | 9848022331

 emp_sal | 30000

@ Row 4

-----------+------------

 emp_id | 3

 emp_city | Chennai

 emp_name | rahman

 emp_phone | 9848022330

 emp_sal | 50000

(4 rows)

Note: You can turn the expand option off using the following command.

cqlsh:tutorialspoint> expand off;

Disabled Expanded output.

EXIT

This command is used to terminate the cql shell.

Cassandra

 32

SHOW

This command displays the details of current cqlsh session such as Cassandra

version, host, or data type assumptions. Given below is the usage of this

command.

cqlsh:tutorialspoint> show host;

Connected to Test Cluster at 127.0.0.1:9042.

cqlsh:tutorialspoint> show version;

[cqlsh 5.0.1 | Cassandra 2.1.2 | CQL spec 3.2.0 | Native protocol v3]

SOURCE

Using this command, you can execute the commands in a file. Suppose our input

file is as follows:

Then you can execute the file containing the commands as shown below.

cqlsh:tutorialspoint> source '/home/hadoop/CassandraProgs/inputfile';

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | Delhi | robin | 9848022339 | 50000

 3 | Pune | rajeev | 9848022331 | 30000

 4 | Chennai | rahman | 9848022330 | 50000

(4 rows)

Cassandra

 33

Part 2: Keyspace Operations

Cassandra

 34

Creating a Keyspace

A keyspace in Cassandra is a namespace that defines data replication on nodes.

A cluster contains one keyspace per node. Given below is the syntax for creating

a keyspace using the statement CREATE KEYSPACE.

Syntax

CREATE KEYSPACE <identifier> WITH <properties>

i.e.

CREATE KEYSPACE “KeySpace Name”
WITH replication = {'class': ‘Strategy name’, 'replication_factor' : ‘No.Of replicas’};

CREATE KEYSPACE “KeySpace Name”
WITH replication = {'class': ‘Strategy name’, 'replication_factor' : ‘No.Of replicas’}

AND durable_writes = ‘Boolean value’;

The CREATE KEYSPACE statement has two properties: replication and

durable_writes.

Replication

The replication option is to specify the Replica Placement strategy and the

number of replicas wanted. The following table lists all the replica placement

strategies.

Strategy name Description

Simple Strategy' Specifies a simple replication factor for the
cluster.

Network Topology Strategy Using this option, you can set the replication
factor for each data-center independently.

Old Network Topology Strategy This is a legacy replication strategy.

Using this option, you can instruct Cassandra whether to use commitlog for

updates on the current KeySpace. This option is not mandatory and by default, it

is set to true.

8. CREATE KEYSPACE

Cassandra

 35

Example

Given below is an example of creating a KeySpace.

● Here we are creating a KeySpace named TutorialsPoint.

● We are using the first replica placement strategy, i.e.., Simple Strategy.

● And we are choosing the replication factor to 1 replica.

cqlsh.> CREATE KEYSPACE tutorialspoint

 WITH replication = {'class':'SimpleStrategy',

'replication_factor' : 3};

Verification

You can verify whether the table is created or not using the command Describe.

If you use this command over keyspaces, it will display all the keyspaces created

as shown below.

cqlsh> DESCRIBE keyspaces;

tutorialspoint system system_traces

Here you can observe the newly created KeySpace tutorialspoint.

Durable_writes

By default, the durable_writes properties of a table is set to true, however it can

be set to false. You cannot set this property to simplex strategy. Given below is

the example demonstrating the usage of durable writes property.

cqlsh> CREATE KEYSPACE test

 ... WITH REPLICATION = { 'class' : 'NetworkTopologyStrategy',
'datacenter1' : 3 }

 ... AND DURABLE_WRITES = false;

Verification

You can verify whether the durable_writes property of test KeySpace was set to

false by querying the System Keyspace. This query gives you all the KeySpaces

along with their properties.

cqlsh> SELECT * FROM system.schema_keyspaces;

 keyspace_name | durable_writes | strategy_class

 | strategy_options

Cassandra

 36

----------------+----------------+--------------------------------------

----------------+----------------------------

test | False | org.apache.cassandra.locator.NetworkTopologyStrategy |

{"datacenter1" : "3"}

tutorialspoint | True | org.apache.cassandra.locator.SimpleStrategy |

"replication_factor" : "4"}

system | True | org.apache.cassandra.locator.LocalStrategy |

{ }

system_traces |True | org.apache.cassandra.locator.SimpleStrategy |

"replication_factor" : "2"}

(4 rows)

Here you can observe the durable_writes property of test KeySpace was set to

false.

Using a Keyspace

You can use a created KeySpace using the keyword USE. Its syntax is as follows:

Syntax:USE <identifier>

Example

In the following example, we are using the KeySpace tutorialspoint.

cqlsh> USE tutorialspoint;

cqlsh:tutorialspoint>

Creating a Keyspace using Java API

You can create a Keyspace using the execute() method of Session class. Follow

the steps given below to create a keyspace using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

Cassandra

 37

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using addContactPoint() method

of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object in a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster

class as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the keyspace name in

string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In this example, we are creating a KeySpace named tp. We are using the first

replica placement strategy, i.e., Simple Strategy, and we are choosing the

replication factor to 1 replica.

You have to store the query in a string variable and pass it to the execute() method

as shown below.

Cassandra

 38

String query="CREATE KEYSPACE tp WITH replication "

 + "= {'class':'SimpleStrategy',

'replication_factor':1}; ";

session.execute(query);

Step 4 : Use the KeySpace

You can use a created KeySpace using the execute() method as shown below.

execute(“ USE tp ”);

Given below is the complete program to create and use a keyspace in Cassandra

using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Create_KeySpace {

 public static void main(String args[]){

 //Query

 String query="CREATE KEYSPACE tp WITH replication "

 + "= {'class':'SimpleStrategy',

 'replication_factor':1};";

 //creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect();

 //Executing the query

 session.execute(query);

 //using the KeySpace

 session.execute("USE tp");

 System.out.println("Keyspace created");

Cassandra

 39

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Create_KeySpace.java

$java Create_KeySpace

Under normal conditions, it will produce the following output:

Keyspace created

Cassandra

 40

Altering a KeySpace

ALTER KEYSPACE can be used to alter properties such as the number of replicas

and the durable_writes of a KeySpace. Given below is the syntax of this command.

Syntax

ALTER KEYSPACE <identifier> WITH <properties>

i.e.

ALTER KEYSPACE “KeySpace Name”

 WITH replication = {'class': ‘Strategy name’,

'replication_factor' : ‘No.Of replicas’};

The properties of ALTER KEYSPACE are same as CREATE KEYSPACE. It has two

properties: replication and durable_writes.

Replication

The replication option specifies the replica placement strategy and the number of

replicas wanted.

Durable_writes

Using this option, you can instruct Cassandra whether to use commitlog for

updates on the current KeySpace. This option is not mandatory and by default, it

is set to true.

Example

Given below is an example of altering a KeySpace.

● Here we are altering a KeySpace named TutorialsPoint.

● We are changing the replication factor from 1 to 3.

cqlsh.> ALTER KEYSPACE tutorialspoint

 WITH replication = {'class':'NetworkTopologyStrategy',

'replication_factor' : 3};

9. ALTER KEYSPACE

Cassandra

 41

Altering Durable_writes

You can also alter the durable_writes property of a KeySpace. Given below is the

durable_writes property of the test KeySpace.

 SELECT * FROM system.schema_keyspaces;

 keyspace_name | durable_writes | strategy_class

 | strategy_options

----------------+----------------+--------------------------------------

----------------+----------------------------

test | False | org.apache.cassandra.locator.NetworkTopologyStrategy |

{"datacenter1":"3"}

tutorialspoint | True | org.apache.cassandra.locator.SimpleStrategy |

"replication_factor":"4"}

system | True | org.apache.cassandra.locator.LocalStrategy |

{ }

system_traces | True |org.apache.cassandra.locator.SimpleStrategy |

"replication_factor":"2"}

(4 rows)

ALTER KEYSPACE test

WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'datacenter1' : 3}

AND DURABLE_WRITES = true;

Once again, if you verify the properties of KeySpaces, it will produce the following

output.

SELECT * FROM system.schema_keyspaces;

 keyspace_name | durable_writes | strategy_class

 | strategy_options

----------------+----------------+--------------------------------------

----------------+----------------------------

test | True | org.apache.cassandra.locator.NetworkTopologyStrategy |

{"datacenter1":"3"}

Cassandra

 42

tutorialspoint | True | org.apache.cassandra.locator.SimpleStrategy |

"replication_factor":"4"}

system | True | org.apache.cassandra.locator.LocalStrategy |
{ }

system_traces | True |org.apache.cassandra.locator.SimpleStrategy |

"replication_factor":"2"}

(4 rows)

Altering a KeySpace using Java API

You can alter a keyspace using the execute() method of Session class. Follow

the steps given below to alter a keyspace using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Cassandra

 43

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster

class as shown below.

 Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the keyspace name in

string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In this example,

● We are altering a keyspace named tp. We are altering the replication option

from Simple Strategy to Network Topology Strategy.

● We are altering the durable_writes to false.

You have to store the query in a string variable and pass it to the execute() method

as shown below.

 //Query

 String query="ALTER KEYSPACE tp WITH replication "

 + "= {'class':'NetworkTopologyStrategy', 'datacenter1':3}"

 +" AND DURABLE_WRITES = false;";

 session.execute(query);

Given below is the complete program to create and use a keyspace in Cassandra

using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Alter_KeySpace {

Cassandra

 44

 public static void main(String args[]){

 //Query

 String query="ALTER KEYSPACE tp WITH replication "

 + "= {'class':'NetworkTopologyStrategy', 'datacenter1':3}"

 + "AND DURABLE_WRITES = false;";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect();

 //Executing the query

 session.execute(query);

 System.out.println("Keyspace altered");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Alter_KeySpace.java

$java Alter_KeySpace

Under normal conditions, it produces the following output:

Keyspace Altered

Cassandra

 45

Dropping a KeySpace

You can drop a KeySpace using the command DROP KEYSPACE. Given below is

the syntax for dropping a KeySpace.

Syntax

DROP KEYSPACE <identifier>

i.e.

DROP KEYSPACE “KeySpace name”

Example

The following code deletes the keyspace tutorialspoint.

cqlsh>DROP KEYSPACE tutorialspoint;

Verification

Verify the keyspaces using the command Describe and check whether the table

is dropped as shown below.

cqlsh>DESCRIBE keyspaces;

system system_traces

Since we have deleted the keyspace tutorialspoint, you will not find it in the

keyspaces list.

Dropping a KeySpace using Java API

You can create a keyspace using the execute() method of Session class. Follow

the steps given below to drop a keyspace using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

10. DROP KEYSPACE

Cassandra

 46

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the keyspace name in

string format to this method as shown below.

Session session = cluster.connect(“ Your keyspace name”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are deleting a keyspace named tp. You have to store

the query in a string variable and pass it to the execute() method as shown below.

String query="DROP KEYSPACE tp; ";

session.execute(query);

Given below is the complete program to create and use a keyspace in Cassandra

using Java API.

Cassandra

 47

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Drop_KeySpace {

 public static void main(String args[]){

 //Query

 String query="Drop KEYSPACE tp";

 //creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect();

 //Executing the query

 session.execute(query);

 System.out.println("Keyspace deleted");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Delete_KeySpace.java

$java Delete_KeySpace

Under normal conditions, it should produce the following output:

Keyspace deleted

Cassandra

 48

Part 3: Table Operations

Cassandra

 49

Create a Table

You can create a table using the command CREATE TABLE. Given below is the

syntax for creating a table.

Syntax

CREATE (TABLE | COLUMNFAMILY) <tablename>

('<column-definition>' , '<column-definition>')

 (WITH <option> AND <option>)

Defining a Column

You can define a column as shown below.

column name1 data type,

column name2 data type,

example:

age int,

name text

Primary Key

The primary key is a column that is used to uniquely identify a row. Therefore,

defining a primary key is mandatory while creating a table. A primary key is made

of one or more columns of a table. You can define a primary key of a table as

shown below.

CREATE TABLE tablename(

column1 name datatype PRIMARYKEY,

column2 name data type,

column3 name data type.

)

or

11. CREATE TABLE

Cassandra

 50

CREATE TABLE tablename(

column1 name datatype PRIMARYKEY,

column2 name data type,

column3 name data type,

PRIMARY KEY (column1)

)

Example

Given below is an example to create a table in Cassandra using cqlsh. Here we

are:

● Using the keyspace tutorialspoint

● Creating a table named emp

It will have details such as employee name, id, city, salary, and phone number.

Employee id is the primary key.

cqlsh>USE tutorialspoint;

cqlsh:tutorialspoint> CREATE TABLE emp(

emp_id int PRIMARY KEY,

 emp_name text,

 emp_city text,

 emp_sal varint,

 emp_phone varint

);

Verification

The select statement will give you the schema. Verify the table using the select

statement as shown below.

cqlsh:tutorialspoint> select * from emp;

emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+----------+----------+-----------+---------

(0 rows)

Cassandra

 51

Here you can observe the table created with the given columns. Since we have

deleted the keyspace tutorialspoint, you will not find it in the keyspaces list.

Creating a Table using Java API

You can create a table using the execute() method of Session class. Follow the

steps given below to create a table using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of the Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the keyspace name in

string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Cassandra

 52

Here we are using the keyspace named tp . Therefore, create the session object

as shown below.

Session session=cluster.connect(“ tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are creating a table named emp. You have to store

the query in a string variable and pass it to the execute() method as shown below.

//Query

 String query="CREATE TABLE emp(emp_id int PRIMARY KEY, "

 + "emp_name text, "

 + "emp_city text, "

 + "emp_sal varint, "

 + "emp_phone varint);";

session.execute(query);

Given below is the complete program to create and use a keyspace in Cassandra

using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Create_Table {

 public static void main(String args[]){

 //Query

 String query="CREATE TABLE emp(emp_id int PRIMARY KEY, "

 + "emp_name text, "

 + "emp_city text, "

 + "emp_sal varint, "

 + "emp_phone varint);";

Cassandra

 53

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Table created");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Create_Table.java

$java Create_Table

Under normal conditions, it should produce the following output:

Table created

Cassandra

 54

Altering a Table

You can alter a table using the command ALTER TABLE. Given below is the syntax

for creating a table.

Syntax

ALTER (TABLE | COLUMNFAMILY) <tablename> <instruction>

Using ALTER command, you can perform the following operations:

● Add a column

● Drop a column

● Update the options of a table using with keyword

Adding a Column

Using ALTER command, you can add a column to a table. While adding columns,

you have to take care that the column name is not conflicting with the existing

column names and that the table is not defined with compact storage option. Given

below is the syntax to add a column to a table.

ALTER TABLE table name

ADD newcolumn datatype;

Example

Given below is an example to add a column to an existing table. Here we are

adding a column called emp_email of text datatype to the table named emp.

cqlsh:tutorialspoint> ALTER TABLE emp

 ... ADD emp_email text;

Verification

Use the SELECT statement to verify whether the column is added or not. Here you

can observe the newly added column emp_email.

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_email | emp_name | emp_phone | emp_sal

12. ALTER TABLE

Cassandra

 55

--------+----------+-----------+----------+-----------+---------

Dropping a Column

Using ALTER command, you can delete a column from a table. Before dropping a

column from a table, check that the table is not defined with compact storage

option. Given below is the syntax to delete a column from a table using ALTER

command.

ALTER table name

DROP column name;

Example

Given below is an example to drop a column from a table. Here we are deleting

the column named emp_email.

cqlsh:tutorialspoint> ALTER TABLE emp DROP emp_email;

Verification

Verify whether the column is deleted using the select statement, as shown below.

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+----------+----------+-----------+---------

(0 rows)

Since emp_email column has been deleted, you cannot find it anymore.

Altering a Table using Java API

You can create a table using the execute() method of Session class. Follow the

steps given below to alter a table using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Cassandra

 56

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

 Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the KeySpace name in

string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Session session=cluster.connect(“ tp”);

Here we are using the KeySpace named tp. Therefore, create the session object

as shown below.

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are adding a column to a table named emp. To do

so, you have to store the query in a string variable and pass it to the execute()

method as shown below.

 //Query

 String query1="ALTER TABLE emp ADD emp_email text";

Cassandra

 57

 session.execute(query);

Given below is the complete program to add a column to an existing table.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Add_column {

 public static void main(String args[]){

 //Query

 String query="ALTER TABLE emp ADD emp_email text";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Column added");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Add_Column.java

$java Add_Column

Under normal conditions, it should produce the following output:

Column added

Cassandra

 58

Deleting a Column

Given below is the complete program to delete a column from an existing table.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Delete_Column {

 public static void main(String args[]){

 //Query

 String query="ALTER TABLE emp DROP emp_email;";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //executing the query

 session.execute(query);

 System.out.println("Column deleted");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Delete_Column.java

$java Delete_Column

Under normal conditions, it should produce the following output:

Column deleted

Cassandra

 59

Dropping a Table

You can drop a table using the command Drop Table. Its syntax is as follows:

Syntax

DROP TABLE <tablename>

Example

The following code drops an existing table from a KeySpace.

cqlsh:tutorialspoint> DROP TABLE emp;

Verification

Use the Describe command to verify whether the table is deleted or not. Since the

emp table has been deleted, you will not find it in the column families list.

cqlsh:tutorialspoint> DESCRIBE COLUMNFAMILIES;

employee

Deleting a Table using Java API

You can delete a table using the execute() method of Session class. Follow the

steps given below to delete a table using Java API.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using addContactPoint() method

of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

13. DROP TABLE

Cassandra

 60

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, you can set it to the existing one by passing the KeySpace name in

string format to this method as shown below.

Session session=cluster.connect(“Your keyspace name”);

Here we are using the keyspace named tp. Therefore, create the session object

as shown below.

Session session=cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using execute() method of Session class. Pass the

query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are deleting a table named emp. You have to store

the query in a string variable and pass it to the execute() method as shown below.

// Query

String query="DROP TABLE emp1;”;

session.execute(query);

Given below is the complete program to drop a table in Cassandra using Java API.

Cassandra

 61

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Drop_Table {

 public static void main(String args[]){

 //Query

 String query="DROP TABLE emp1;";

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Table dropped");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Drop_Table.java

$java Drop_Table

Under normal conditions, it should produce the following output:

Table dropped

Cassandra

 62

Truncating a Table

You can truncate a table using the TRUNCATE command. When you truncate a

table, all the rows of the table are deleted permanently. Given below is the syntax

of this command.

Syntax

TRUNCATE <tablename>

Example

Let us assume there is a table called student with the following data.

s_id s_name s_branch s_aggregate

1 ram IT 70

2 rahman EEE 75

3 robbin Mech 72

When you execute the select statement to get the table student, it will give you

the following output.

cqlsh:tp> select * from student;

 s_id | s_aggregate | s_branch | s_name

------+-------------+----------+--------

 1 | 70 | IT | ram

 2 | 75 | EEE | rahman

 3 | 72 | MECH | robbin

(3 rows)

Now truncate the table using the TRUNCATE command.

cqlsh:tp> TRUNCATE student;

14. TRUNCATE TABLE

Cassandra

 63

Verification

Verify whether the table is truncated by executing the select statement. Given

below is the output of the select statement on the student table after truncating.

cqlsh:tp> select * from student;

 s_id | s_aggregate | s_branch | s_name

------+-------------+----------+--------

(0 rows)

Truncating a Table using Java API

You can truncate a table using the execute() method of Session class. Follow the

steps given below to truncate a table.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Cassandra

 64

Step 2: Creating a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Session session=cluster.connect(“ tp”);

Here we are using the keyspace named tp. Therefore, create the session object

as shown below.

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are truncating a table named emp. You have to store

the query in a string variable and pass it to the execute() method as shown

below.

//Query

 String query="TRUNCATE emp;;”;

 session.execute(query);

Given below is the complete program to truncate a table in Cassandra using Java

API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Truncate_Table {

 public static void main(String args[]){

 //Query

 String query="Truncate student;";

Cassandra

 65

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Table truncated");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Truncate_Table.java

$java Truncate_Table

Under normal conditions, it should produce the following output:

Table truncated

Cassandra

 66

Creating an Index

You can create an index in Cassandra using the command CREATE INDEX. Its

syntax is as follows:

CREATE INDEX <identifier> ON <tablename>

Given below is an example to create an index to a column. Here we are creating

an index to a column ‘emp_name’ in a table named emp.

cqlsh:tutorialspoint> CREATE INDEX name ON emp1 (emp_name);

Creating an Index using Java API

You can create an index to a column of a table using the execute() method of

Session class. Follow the steps given below to create an index to a column in a

table.

Step 1: Create a Cluster Object

First of all, create an instance of Cluster.builder class of

com.datastax.driver.core package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

15. CREATE INDEX

Cassandra

 67

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Here we are using the KeySpace called tp. Therefore, create the session object as

shown below.

Session session=cluster.connect(“ tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are creating an index to a column called emp_name,

in a table named emp. You have to store the query in a string variable and pass

it to the execute() method as shown below.

//Query

String query="CREATE INDEX name ON emp1 (emp_name);";

session.execute(query);

Given below is the complete program to create an index of a column in a table in

Cassandra using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Create_Index {

 public static void main(String args[]){

Cassandra

 68

 //Query

 String query="CREATE INDEX name ON emp1 (emp_name);";

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Index created");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Create_Index.java

$java Create_Index

Under normal conditions, it should produce the following output:

Index created

Cassandra

 69

Dropping an Index

You can drop an index using the command DROP INDEX. Its syntax is as follows:

DROP INDEX <identifier>

Given below is an example to drop an index of a column in a table. Here we are

dropping the index of the column name in the table emp.

cqlsh:tp> drop index name;

Dropping an Index using Java API

You can drop an index of a table using the execute() method of Session class.

Follow the steps given below to drop an index from a table.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

16. DROP INDEX

Cassandra

 70

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

 Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Here we are using the KeySpace named tp. Therefore, create the session object

as shown below.

Session session=cluster.connect(“ tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are dropping an index “name” of emp table. You

have to store the query in a string variable and pass it to the execute() method

as shown below.

//Query

String query="DROP INDEX user_name;";

session.execute(query);

Given below is the complete program to drop an index in Cassandra using Java

API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Drop_Index {

 public static void main(String args[]){

 //Query

 String query="DROP INDEX user_name;";

Cassandra

 71

 //Creating cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Index dropped");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Drop_index.java

$java Drop_index

Under normal conditions, it should produce the following output:

Index dropped

Cassandra

 72

Using Batch Statements

Using BATCH, you can execute multiple modification statements (insert, update,

delete) simultaneiously. Its syntax is as follows:

BEGIN BATCH

<insert-stmt>/ <update-stmt>/ <delete-stmt>

APPLY BATCH

Example

Assume there is a table in Cassandra called emp having the following data:

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin Delhi 9848022339 50000

3 rahman Chennai 9848022330 45000

In this example, we will perform the following operations:

● Insert a new row with the following details (4, rajeev, pune, 9848022331,

30000).

● Update the salary of employee with row id 3 to 50000.

● Delete city of the employee with row id 2.

To perform the above operations in one go, use the following BATCH command:

cqlsh:tutorialspoint> BEGIN BATCH

 ... INSERT INTO emp (emp_id, emp_city, emp_name,

 emp_phone, emp_sal) values(4,'Pune','rajeev',9848022331, 30000);

 ... UPDATE emp SET emp_sal = 50000 WHERE emp_id =3;

 ... DELETE emp_city FROM emp WHERE emp_id = 2;

 ... APPLY BATCH;

17. BATCH STATEMENTS

Cassandra

 73

Verification

After making changes, verify the table using the SELECT statement. It should

produce the following output:

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | null | robin | 9848022339 | 50000

 3 | Chennai | rahman | 9848022330 | 50000

 4 | Pune | rajeev | 9848022331 | 30000

(4 rows)

Here you can observe the table with modified data.

Batch Statements using Java API

Batch statements can be written programmatically in a table using the execute()

method of Session class. Follow the steps given below to execute multiple

statements using batch statement with the help of Java API.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. Use the following code to create the

cluster object:

//Building a cluster

Cluster cluster=builder.build();

You can build the cluster object using a single line of code as shown below.

Cassandra

 74

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Here we are using the KeySpace named tp. Therefore, create the session object

as shown below.

Session session=cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In this example, we will perform the following operations:

● Insert a new row with the following details (4, rajeev, pune, 9848022331,

30000).

● Update the salary of employee with row id 3 to 50000.

● Delete the city of the employee with row id 2.

You have to store the query in a string variable and pass it to the execute() method

as shown below.

String query1= ” BEGIN BATCH INSERT INTO emp (emp_id, emp_city,

emp_name, emp_phone, emp_sal) values(4,'Pune','rajeev',9848022331,

30000);

UPDATE emp SET emp_sal = 50000 WHERE emp_id =3;

DELETE emp_city FROM emp WHERE emp_id = 2;

APPLY BATCH;”;

Given below is the complete program to execute multiple statements

simultaneously on a table in Cassandra using Java API.

Cassandra

 75

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Batch {

 public static void main(String args[]){

 //query

 String query=" BEGIN BATCH INSERT INTO emp (emp_id, emp_city,

 emp_name, emp_phone, emp_sal) values(4,'Pune','rajeev',9848022331,

 30000);"

 + "UPDATE emp SET emp_sal = 50000 WHERE emp_id =3;"

 + "DELETE emp_city FROM emp WHERE emp_id = 2;"

 + "APPLY BATCH;";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Changes done");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Batch.java

$java Batch

Under normal conditions, it should produce the following output:

Changes done

Cassandra

 76

Part 4: CURD Operations

Cassandra

 77

Creating Data in a Table

You can insert data into the columns of a row in a table using the command

INSERT. Given below is the syntax for creating data in a table.

INSERT INTO <tablename>

 (<column1 name>, <column2 name>....)

 VALUES (<value1>, <value2>....)

 USING <option>

Example

Let us assume there is a table called emp with columns (emp_id, emp_name,

emp_city, emp_phone, emp_sal) and you have to insert the following data into

the emp table.

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin Hyderabad 9848022339 40000

3 rahman Chennai 9848022330 45000

Use the commands given below to fill the table with required data.

cqlsh:tutorialspoint> INSERT INTO emp (emp_id, emp_name, emp_city,

emp_phone, emp_sal) VALUES(1,'ram', 'Hyderabad', 9848022338, 50000);

cqlsh:tutorialspoint> INSERT INTO emp (emp_id, emp_name, emp_city,

emp_phone, emp_sal) VALUES(2,'robin', 'Hyderabad', 9848022339, 40000);

cqlsh:tutorialspoint> INSERT INTO emp (emp_id, emp_name, emp_city,

emp_phone, emp_sal) VALUES(3,'rahman', 'Chennai', 9848022330, 45000);

18. CREATE DATA

Cassandra

 78

Verification

After inserting data, use SELECT statement to verify whether the data has been

inserted or not. If you verify the emp table using SELECT statement, it will give

you the following output.

cqlsh:tutorialspoint> SELECT * FROM emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | Hyderabad | robin | 9848022339 | 40000

 3 | Chennai | rahman | 9848022330 | 45000

(3 rows)

Here you can observe the table has populated with the data we inserted.

Creating Data using Java API

You can create data in a table using the execute() method of Session class. Follow

the steps given below to create data in a table using java API.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. The following code shows how to

create a cluster object.

//Building a cluster

Cluster cluster=builder.build();

Cassandra

 79

You can build a cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Here we are using the KeySpace called tp. Therefore, create the session object as

shown below.

Session session=cluster.connect(“ tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are inserting data in a table called emp. You have

to store the query in a string variable and pass it to the execute() method as

shown below.

String query1 = “INSERT INTO emp (emp_id, emp_name, emp_city, emp_phone,

emp_sal)

 VALUES(1,'ram', 'Hyderabad', 9848022338, 50000);” ;

String query2 = “INSERT INTO emp (emp_id, emp_name, emp_city, emp_phone,

emp_sal)

 VALUES(2,'robin', 'Hyderabad', 9848022339, 40000);” ;

String query3 = “INSERT INTO emp (emp_id, emp_name, emp_city, emp_phone,

emp_sal)

 VALUES(3,'rahman', 'Chennai', 9848022330, 45000);” ;

Cassandra

 80

session.execute(query1);

session.execute(query2);

session.execute(query3);

Given below is the complete program to insert data into a table in Cassandra using

Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Create_Data {

 public static void main(String args[]){

 //queries

 String query1="INSERT INTO emp (emp_id, emp_name, emp_city,

 emp_phone, emp_sal)"

 + " VALUES(1,'ram', 'Hyderabad', 9848022338, 50000);" ;

 String query2="INSERT INTO emp (emp_id, emp_name, emp_city,

 emp_phone, emp_sal)"

 + " VALUES(2,'robin', 'Hyderabad', 9848022339, 40000);" ;

 String query3="INSERT INTO emp (emp_id, emp_name, emp_city,

 emp_phone, emp_sal)"

 + " VALUES(3,'rahman', 'Chennai', 9848022330, 45000);" ;

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query1);

Cassandra

 81

 session.execute(query2);

 session.execute(query3);

 System.out.println("Data created");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Create_Data.java

$java Create_Data

Under normal conditions, it should produce the following output:

Data created

Cassandra

 82

Updating Data in a Table

UPDATE is the command used to update data in a table. The following keywords

are used while updating data in a table:

● Where: This clause is used to select the row to be updated.

● Set: Set the value using this keyword.

● Must: Includes all the columns composing the primary key.

While updating rows, if a given row is unavailable, then UPDATE creates a fresh

row. Given below is the syntax of UPDATE command:

UPDATE <tablename>

 SET <column name> = <new value>

 <column name> = <value>....
 WHERE <condition>

Example

Assume there is a table named emp. This table stores the details of employees of

a certain company, and it has the following details:

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin Hyderabad 9848022339 40000

3 rahman Chennai 9848022330 45000

Let us now update emp_city of robin to Delhi, and his salary to 50000. Given

below is the query to perform the required updates.

cqlsh:tutorialspoint> UPDATE emp SET emp_city='Delhi',emp_sal=50000

 WHERE emp_id=2;

19. UPDATE DATA

Cassandra

 83

Verification

Use SELECT statement to verify whether the data has been updated or not. If you

verify the emp table using SELECT statement, it will produce the following output.

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | Delhi | robin | 9848022339 | 50000

 3 | Chennai | rahman | 9848022330 | 45000

(3 rows)

Here you can observe the table data has got updated.

Updating Data using Java API

You can update data in a table using the execute() method of Session class. Follow

the steps given below to update data in a table using Java API.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. Use the following code to create the

cluster object.

//Building a cluster

Cluster cluster = builder.build();

Cassandra

 84

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session = cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name”);

Here we are using the KeySpace named tp. Therefore, create the session object

as shown below.

Session session=cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are updating the emp table. You have to store the

query in a string variable and pass it to the execute() method as shown below.

String query = “ UPDATE emp SET emp_city='Delhi',emp_sal=50000

WHERE emp_id=2;” ;

Given below is the complete program to update data in a table using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Update_Data {

 public static void main(String args[]){

 //query

 String query = " UPDATE emp SET emp_city='Delhi',emp_sal=50000"

Cassandra

 85

 + " WHERE emp_id=2;" ;

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Data updated");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Update_Data.java

$java Update_Data

Under normal conditions, it should produce the following output:

Data updated

Cassandra

 86

Reading Data using Select Clause

SELECT clause is used to read data from a table in Cassandra. Using this clause,

you can read a whole table, a single column, or a particular cell. Given below is

the syntax of SELECT clause.

SELECT FROM <tablename>

Example

Assume there is a table in the keyspace named emp with the following details:

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin null 9848022339 50000

3 rahman Chennai 9848022330 50000

4 rajeev Pune 9848022331 30000

The following example shows how to read a whole table using SELECT clause. Here

we are reading a table called emp.

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | null | robin | 9848022339 | 50000

 3 | Chennai | rahman | 9848022330 | 50000

 4 | Pune | rajeev | 9848022331 | 30000

(4 rows)

20. READ DATA

Cassandra

 87

Reading Required Columns

The following example shows how to read a particular column in a table.

cqlsh:tutorialspoint> SELECT emp_name, emp_sal from emp;

 emp_name | emp_sal

----------+---------

 ram | 50000

 robin | 50000

 rajeev | 30000

 rahman | 50000

(4 rows)

Where Clause

Using WHERE clause, you can put a constraint on the required columns. Its syntax

is as follows:

SELECT FROM <table name> WHERE <condition>;

Note: A WHERE clause can be used only on the columns that are a part of primary

key or have a secondary index on them.

In the following example, we are reading the details of an employee whose salary

is 50000. First of all, set secondary index to the column emp_sal.

cqlsh:tutorialspoint> CREATE INDEX ON emp(emp_sal);

cqlsh:tutorialspoint> SELECT * FROM emp WHERE emp_sal=50000;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | null | robin | 9848022339 | 50000

 3 | Chennai | rahman | 9848022330 | 50000

Cassandra

 88

Reading Data using Java API

You can read data from a table using the execute() method of Session class. Follow

the steps given below to execute multiple statements using batch statement with

the help of Java API.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. Use the following code to create the

cluster object.

//Building a cluster

Cluster cluster=builder.build();

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“Your keyspace name”);

Here we are using the KeySpace called tp. Therefore, create the session object as

shown below.

Cassandra

 89

Session session=cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using execute() method of Session class. Pass the

query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In this example, we are retrieving the data from emp table. Store the query in a

string and pass it to the execute() method of session class as shown below.

String query=”SELECT 8 FROM emp”;

session.execute(query);

Execute the query using the execute() method of Session class.

Step 4: Get the ResultSet Object

The select queries will return the result in the form of a ResultSet object,

therefore store the result in the object of RESULTSET class as shown below.

ResultSet result=session.execute();

Given below is the complete program to read data from a table.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.ResultSet;

import com.datastax.driver.core.Session;

public class Read_Data {

 public static void main(String args[])throws Exception{

 //queries

 String query="SELECT * FROM emp";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tutorialspoint");

Cassandra

 90

 //Getting the ResultSet

 ResultSet result=session.execute(query);

 System.out.println(result.all());

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Read_Data.java

$java Read_Data

Under normal conditions, it should produce the following output:

[Row[1, Hyderabad, ram, 9848022338, 50000], Row[2, Delhi, robin,

9848022339, 50000], Row[4, Pune, rajeev, 9848022331, 30000], Row[3,

Chennai, rahman, 9848022330, 50000]]

Cassandra

 91

Deleting Data from a Table

You can delete data from a table using the command DELETE. Its syntax is as

follows:

DELETE FROM <identifier> WHERE <condition>;

Example

Let us assume there is a table in Cassandra called emp having the following data:

emp_id emp_name emp_city emp_phone emp_sal

1 ram Hyderabad 9848022338 50000

2 robin Hyderabad 9848022339 40000

3 rahman Chennai 9848022330 45000

The following statement deletes the emp_sal column of last row:

cqlsh:tutorialspoint> DELETE emp_sal FROM emp WHERE emp_id=3;

Verification

Use SELECT statement to verify whether the data has been deleted or not. If you

verify the emp table using SELECT, it will produce the following output:

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | Delhi | robin | 9848022339 | 50000

 3 | Chennai | rahman | 9848022330 | null

(3 rows)

Since we have deleted the salary of Rahman, you will observe a null value in place

of salary.

21. DELETE DATA

Cassandra

 92

Deleting an Entire Row

The following command deletes an entire row from a table.

cqlsh:tutorialspoint> DELETE FROM emp WHERE emp_id=3;

Verification

Use SELECT statement to verify whether the data has been deleted or not. If you

verify the emp table using SELECT, it will produce the following output:

cqlsh:tutorialspoint> select * from emp;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-----------+----------+------------+---------

 1 | Hyderabad | ram | 9848022338 | 50000

 2 | Delhi | robin | 9848022339 | 50000

(2 rows)

Since we have deleted the last row, there are only two rows left in the table.

Deleting Data using Java API

You can delete data in a table using the execute() method of Session class. Follow

the steps given below to delete data from a table using java API.

Step 1: Create a Cluster Object

Create an instance of Cluster.builder class of com.datastax.driver.core

package as shown below.

//Creating Cluster.Builder object

Cluster.Builder builder1= Cluster.builder();

Add a contact point (IP address of the node) using the addContactPoint()

method of Cluster.Builder object. This method returns Cluster.Builder.

//Adding contact point to the Cluster.Builder object

Cluster.Builder builder2=build.addContactPoint("127.0.0.1");

Using the new builder object, create a cluster object. To do so, you have a method

called build() in the Cluster.Builder class. Use the following code to create a

cluster object.

Cassandra

 93

//Building a cluster

Cluster cluster=builder.build();

You can build the cluster object using a single line of code as shown below.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Step 2: Create a Session Object

Create an instance of Session object using the connect() method of Cluster class

as shown below.

Session session=cluster.connect();

This method creates a new session and initializes it. If you already have a

keyspace, then you can set it to the existing one by passing the KeySpace name

in string format to this method as shown below.

Session session=cluster.connect(“ Your keyspace name ”);

Here we are using the KeySpace called tp. Therefore, create the session object as

shown below.

Session session=cluster.connect(“tp”);

Step 3: Execute Query

You can execute CQL queries using the execute() method of Session class. Pass

the query either in string format or as a Statement class object to the execute()

method. Whatever you pass to this method in string format will be executed on

the cqlsh.

In the following example, we are deleting data from a table named emp. You have

to store the query in a string variable and pass it to the execute() method as

shown below.

String query1= ”DELETE FROM emp WHERE emp_id=3; ”;

session.execute(query);

Cassandra

 94

Given below is the complete program to delete data from a table in Cassandra

using Java API.

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Session;

public class Delete_Data {

 public static void main(String args[]){

 //query

 String query = "DELETE FROM emp WHERE emp_id=3;";

 //Creating Cluster object

 Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

 //Creating Session object

 Session session=cluster.connect("tp");

 //Executing the query

 session.execute(query);

 System.out.println("Data deleted");

 }

}

Save the above program with the class name followed by .java, browse to the

location where it is saved. Compile and execute the program as shown below.

$javac Delete_Data.java

$java Delete_Data

Under normal conditions, it should produce the following output:

Data deleted

Cassandra

 95

Part 5: CQL Types

Cassandra

 96

Cassandra

 97

CQL provides a rich set of built-in data types, including collection types. Along with

these data types, users can also create their own custom data types. The following

table provides a list of built-in data types available in CQL.

Data Type Constants Description

ascii strings Represents ASCII character
string

bigint integers Represents 64-bit signed long

blob blobs Represents arbitrary bytes

Boolean booleans Represents true or false

counter integers Represents counter column

decimal integers, floats Represents variable-precision

decimal

double integers Represents 64-bit IEEE-754

floating point

float integers, floats Represents 32-bit IEEE-754

floating point

inet strings Represents an IP address, IPv4
or IPv6

int integers Represents 32-bit signed int

text strings Represents UTF8 encoded

string

timestamp integers, strings Represents a timestamp

timeuuid uuids Represents type 1 UUID

uuid uuids Represents type 1 or type 4

22. CQL DATATYPES

Cassandra

 98

UUID

varchar strings Represents uTF8 encoded
string

varint integers Represents arbitrary-precision
integer

Collection Types

Cassandra Query Language also provides a collection data types. The following

table provides a list of Collections available in CQL.

Collection Description

list A list is a collection of one or more ordered elements.

map A map is a collection of key-value pairs.

set A set is a collection of one or more elements.

User-defined datatypes: Cqlsh provides users a facility of creating their own

data types. Given below are the commands used while dealing with user defined

datatypes.

 CREATE TYPE: Creates a user-defined datatype.

 ALTER TYPE: Modifies a user-defined datatype.

 DROP TYPE: Drops a user-defined datatype.

 DESCRIBE TYPE: Describes a user-defined datatype.

 DESCRIBE TYPES: Describes user-defined datatypes.

Cassandra

 99

CQL provides the facility of using Collection data types. Using these Collection

types, you can store multiple values in a single variable. This chapter explains how

to use Collections in Cassandra.

List

List is used in the cases where

● the order of the elements is to be maintained, and

● a value is to be stored multiple times.

You can get the values of a list data type using the index of the elements in the

list.

Creating a Table with List

Given below is an example to create a sample table with two columns, name and

email. To store multiple emails, we are using list.

cqlsh:tutorialspoint> CREATE TABLE data(name text PRIMARY KEY, email

list<text>);

Inserting Data into a List

While inserting data into the elements in a list, enter all the values separated by

comma within square braces [] as shown below.

cqlsh:tutorialspoint> INSERT INTO data(name, email) VALUES ('ramu',

['abc@gmail.com','cba@yahoo.com']);

Updating a List

Given below is an example to update the list data type in a table called data. Here

we are adding another email to the list.

cqlsh:tutorialspoint> UPDATE data

 ... SET email = email +['xyz@tutorialspoint.com']

 ... where name = 'ramu';

23. CQL COLLECTIONS

Cassandra

 100

Verification

If you verify the table using SELECT statement, you will get the following result:

cqlsh:tutorialspoint> SELECT * FROM data;

 name | email

------+--

 ramu | ['abc@gmail.com', 'cba@yahoo.com', 'xyz@tutorialspoint.com']

(1 rows)

SET

Set is a data type that is used to store a group of elements. The elements of a set

will be returned in a sorted order.

Creating a Table with Set

The following example creates a sample table with two columns, name and phone.

For storing multiple phone numbers, we are using set.

cqlsh:tutorialspoint> CREATE TABLE data2 (name text PRIMARY KEY, phone

set<varint>);

Inserting Data into a Set

While inserting data into the elements in a set, enter all the values separated by

comma within curly braces { } as shown below.

cqlsh:tutorialspoint> INSERT INTO data2(name, phone)VALUES ('rahman',

{9848022338,9848022339});

Updating a Set

The following code shows how to update a set in a table named data2. Here we

are adding another phone number to the set.

cqlsh:tutorialspoint> UPDATE data2

 ... SET phone = phone + {9848022330}

 ... where name='rahman';

Cassandra

 101

Verification

If you verify the table using SELECT statement, you will get the following result:

cqlsh:tutorialspoint> SELECT * FROM data2;

 name | phone

--------+--------------------------------------

 rahman | {9848022330, 9848022338, 9848022339}

(1 rows)

MAP

Map is a data type that is used to store a key-value pair of elements.

Creating a Table with Map

The following example shows how to create a sample table with two columns,

name and address. For storing multiple address values, we are using map.

cqlsh:tutorialspoint> CREATE TABLE data3 (name text PRIMARY KEY, address

map<timestamp, text>);

Inserting Data into a Map

While inserting data into the elements in a map, enter all the key : value pairs

separated by comma within curly braces { } as shown below.

cqlsh:tutorialspoint> INSERT INTO data3 (name, address)

 VALUES ('robin', {'home' : 'hyderabad' , 'office'

 : 'Delhi' });

Updating a Set

The following code shows how to update the map data type in a table named

data3. Here we are changing the value of the key office, that is, we are changing

the office address of a person named robin.

cqlsh:tutorialspoint> UPDATE data3

 ... SET address = address+{'office':'mumbai'}

 ... WHERE name = 'robin';

Cassandra

 102

Verification

If you verify the table using SELECT statement, you will get the following result:

cqlsh:tutorialspoint> select * from data3;

 name | address

-------+---

 robin | {'home': 'hyderabad', 'office': 'mumbai'}

(1 rows)

Cassandra

 103

CQL provides the facility of creating and using user-defined data types. You can

create a data type to handle multiple fields. This chapter explains how to create,

alter, and delete a user-defined data type.

Creating a User-defined Data Type

The command CREATE TYPE is used to create a user-defined data type. Its

syntax is as follows:

CREATE TYPE <keyspace name > . <data typename>

(variable1, variable2).

Example

Given below is an example for creating a user-defined data type. In this example,

we are creating a card_details data type containing the following details.

Field Field name Data type

credit card no num int

credit card pin pin int

name on credit card name text

cvv cvv int

Contact details of card holder phone set

cqlsh:tutorialspoint> CREATE TYPE card_details (

 ... num int,

 ... pin int,

 ... name text,

 ... cvv int,

 ... phone set<int>

 ...);

24. CQL USER-DEFINED DATATYPES

Cassandra

 104

Note: The name used for user-defined data type should not coincide with reserved

type names.

Verification

Use the DESCRIBE command to verify whether the type created has been created

or not.

CREATE TYPE tutorialspoint.card_details (

 num int,

 pin int,

 name text,

 cvv int,

 phone set<int>

);

Altering a User-defined Data Type

ALTER TYPE command is used to alter an existing data type. Using ALTER, you

can add a new field or rename an existing field.

Adding a Field to a Type

Use the following syntax to add a new field to an existing user-defined data type.

ALTER TYPE typename

ADD field_name field_type;

The following code adds a new field to the Card_details data type. Here we are

adding a new field called email.

cqlsh:tutorialspoint> ALTER TYPE card_details ADD email text;

Verification

Use the DESCRIBE command to verify whether the new field is added or not.

cqlsh:tutorialspoint> describe type card_details;

CREATE TYPE tutorialspoint.card_details (

 num int,

 pin int,

 name text,

 cvv int,

 phone set<int>,

Cassandra

 105

);

Renaming a Field in a Type

Use the following syntax to rename an existing user-defined data type.

ALTER TYPE typename

RENAME existing_name TO new_name;

The following code changes the name of the field in a type. Here we are renaming

the field email to mail.

cqlsh:tutorialspoint> ALTER TYPE card_details RENAME email TO mail;

Verification

Use the DESCRIBE command to verify whether the type name changed or not.

cqlsh:tutorialspoint> describe type card_details;

CREATE TYPE tutorialspoint.card_details (

 num int,

 pin int,

 name text,

 cvv int,

 phone set<int>,

 mail text

);

Deleting a User-defined Data Type

DROP TYPE is the command used to delete a user-defined data type. Given below

is an example to delete a user-defined data type.

Example

Before deleting, verify the list of all user-defined data types using

DESCRIBE_TYPES command as shown below.

cqlsh:tutorialspoint> DESCRIBE TYPES;

card_details card

From the two types, delete the type named card as shown below.

Cassandra

 106

cqlsh:tutorialspoint> drop type card;

Use the DESCRIBE command to verify whether the data type dropped or not.

cqlsh:tutorialspoint> describe types;

card_details

